(2010•衡陽)如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,BG⊥AE,垂足為G,BG=,則△CEF的周長為( )

A.8
B.9.5
C.10
D.11.5
【答案】分析:本題意在綜合考查平行四邊形、相似三角形、和勾股定理等知識的掌握程度和靈活運(yùn)用能力,同時(shí)也體現(xiàn)了對數(shù)學(xué)中的數(shù)形結(jié)合思想的考查.在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點(diǎn)E,可得△ADF是等腰三角形,AD=DF=9;△ABE是等腰三角形,AB=BE=6,所以CF=3;在△ABG中,BG⊥AE,AB=6,BG=,可得AG=2,又△ADF是等腰三角形,BG⊥AE,所以AE=2AG=4,所以△ABE的周長等于16,又由?ABCD可得△CEF∽△BEA,相似比為1:2,所以△CEF的周長為8,因此選A.
解答:解:∵在?ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分線交BC于點(diǎn)E,
∴AB∥DC,∠BAF=∠DAF,
∴∠BAF=∠F,
∴∠DAF=∠F,
∴AD=FD,
∴△ADF是等腰三角形,
同理△ABE是等腰三角形,
AD=DF=9;
∵AB=BE=6,
∴CF=3;
∴在△ABG中,BG⊥AE,AB=6,BG=,可得:AG=2,
又BG⊥AE,
∴AE=2AG=4,
∴△ABE的周長等于16,
又∵?ABCD
∴△CEF∽△BEA,相似比為1:2,
∴△CEF的周長為8.
故選A.
點(diǎn)評:本題考查勾股定理、相似三角形的知識,相似三角形的周長比等于相似比.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(04)(解析版) 題型:選擇題

(2010•衡陽)如圖,已知⊙O的兩條弦AC,BD相交于點(diǎn)E,∠A=70°,∠c=50°,那么sin∠AEB的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(05)(解析版) 題型:解答題

(2010•衡陽)如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)D的切線交BC于E.
(1)求證:DE=BC;
(2)若tanC=,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(2010•衡陽)如圖,已知⊙O的兩條弦AC,BD相交于點(diǎn)E,∠A=70°,∠c=50°,那么sin∠AEB的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《圓》(10)(解析版) 題型:解答題

(2010•衡陽)如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,過點(diǎn)D的切線交BC于E.
(1)求證:DE=BC;
(2)若tanC=,DE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年廣東省廣州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•衡陽)如圖,在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,BG⊥AE,垂足為G,BG=,則△CEF的周長為( )

A.8
B.9.5
C.10
D.11.5

查看答案和解析>>

同步練習(xí)冊答案