【題目】平行四邊形ABCD中, AE、BF分別平分∠DAB和∠ABC交CD于點(diǎn)E、F.AE、BF交于點(diǎn)G.

(1)求證AE⊥BF

(2)判斷DE和CF的大小關(guān)系,并說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)DE=CF,理由見(jiàn)解析.

【解析】試題分析:(1)本題利用平行線的性質(zhì)和角平分線的性質(zhì)求出即可;(2)本題要先給出答案,證明利用角平分線和平行線的性質(zhì)構(gòu)造出等腰三角形.

試題解析:

(1)∵AE平分∠DAB BF平分∠ABC

∴∠BAE=∠DAB ∠ABF=∠ABC

∵AD∥BC ∴∠DAB+∠ABC=180°∴∠BAE+∠ABF=90°∴AE⊥CF

2DE=EF

∵AE平分∠DAB ∴∠DAE=∠EAB ∵DC∥AB∴∠EAB=∠DEA ∴∠DAE=∠DEA∴DE=AD

同理CF=BC AD=BC ∴DE=CF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DE∥BF∠1與∠2互補(bǔ).

1)試說(shuō)明:FG∥AB;

2)若∠CFG=60°,∠2=150°,則DEAC垂直嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCO的對(duì)角線BOx 軸上,若正方形ABCO的邊長(zhǎng)為,點(diǎn)Bx負(fù)半軸上,反比例函數(shù)的圖象經(jīng)過(guò)C點(diǎn).

1)求該反比例函數(shù)的解析式;

2)當(dāng)函數(shù)值-2時(shí),請(qǐng)直接寫(xiě)出自變量x的取值范圍;

3)若點(diǎn)P是反比例函數(shù)上的一點(diǎn),且PBO的面積恰好等于正方形ABCO的面積,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某部隊(duì)要進(jìn)行一次急行軍訓(xùn)練,路程為32km.大部隊(duì)先行,出發(fā)1小時(shí)后,由特種兵組成的突擊小隊(duì)才出發(fā),結(jié)果比大部隊(duì)提前20分鐘到達(dá)目的地.已知突擊小隊(duì)的行進(jìn)速度是大部隊(duì)的1.5倍.
(1)求大部隊(duì)的行進(jìn)速度.(列方程解應(yīng)用題)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樓AB高16米,遠(yuǎn)處有一塔CD,某人在樓底B處測(cè)得塔頂?shù)难鼋菫?8.5°,爬到樓頂A處測(cè)得塔頂?shù)难鼋菫?2°,求塔高CD及大樓與塔之間的距離BD的長(zhǎng).(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次考試中,某班級(jí)的數(shù)學(xué)成績(jī)統(tǒng)計(jì)圖如下.下列說(shuō)法錯(cuò)誤的是( )

A. 得分在7080分之間的人數(shù)最多

B. 該班的總?cè)藬?shù)為40

C. 得分在90100分之間的人數(shù)最少

D. 及格(≥60分)人數(shù)是26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在每個(gè)小正方形的邊長(zhǎng)均為1的7×7網(wǎng)格圖中,格點(diǎn)上有A,B,C,D,E五個(gè)定點(diǎn),如圖所示,一個(gè)動(dòng)點(diǎn)P從點(diǎn)E出發(fā),繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,之后該動(dòng)點(diǎn)繼續(xù)繞點(diǎn)B,C,D逆時(shí)針90°后回到初始位置,點(diǎn)P運(yùn)轉(zhuǎn)路線的總長(zhǎng)是 . (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點(diǎn),過(guò)點(diǎn)ABC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=DC ;

(2)若∠BAC=,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小浩從二次函數(shù)y=ax2+bx+c(a≠0)的圖象中得到如下信息:
①ab<0
②4a+b=0
③當(dāng)y=5時(shí)只能得x=0
④關(guān)于x的一元二次方程ax2+bx+c=10有兩個(gè)不相等的實(shí)數(shù)根,
你認(rèn)為其中正確的有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案