(2010•西藏)某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷售這種冰箱的利潤(rùn)是y元,請(qǐng)寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?
【答案】
分析:(1)根據(jù)題意易求y與x之間的函數(shù)表達(dá)式.
(2)已知函數(shù)解析式,設(shè)y=4800可從實(shí)際得x的值.
(3)利用x=-
求出x的值,然后可求出y的最大值.
解答:解:(1)根據(jù)題意,得y=(2400-2000-x)(8+4×
),
即y=-
x
2+24x+3200;(2分)
(2)由題意,得-
x
2+24x+3200=4800.
整理,得x
2-300x+20000=0.(4分)
解這個(gè)方程,得x
1=100,x
2=200.(5分)
要使百姓得到實(shí)惠,取x=200元.
∴每臺(tái)冰箱應(yīng)降價(jià)200元;(6分)
(3)對(duì)于y=-
x
2+24x+3200=-
(x-150)
2+5000,
當(dāng)x=150時(shí),(8分)
y
最大值=5000(元).
所以,每臺(tái)冰箱的售價(jià)降價(jià)150元時(shí),商場(chǎng)的利潤(rùn)最大,最大利潤(rùn)是5000元.(10分)
點(diǎn)評(píng):求二次函數(shù)的最大(小)值有三種方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法.借助二次函數(shù)解決實(shí)際問題.
科目:初中數(shù)學(xué)
來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版)
題型:解答題
(2010•西藏)某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷售這種冰箱的利潤(rùn)是y元,請(qǐng)寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?
查看答案和解析>>