如圖,拋物線與y軸相交于點(diǎn)A,與過點(diǎn)A平行于x軸的直線相交于點(diǎn)B(點(diǎn)B在第一象限).拋物線的頂點(diǎn)C在直線OB上,對(duì)稱軸與x軸相交于點(diǎn)D.平移拋物線,使其經(jīng)過點(diǎn)A、D,則平移后的拋物線的解析式為   

試題分析:∵在中,令x=0,則y=,∴點(diǎn)A(0,),
根據(jù)題意,點(diǎn)A、B關(guān)于對(duì)稱軸對(duì)稱,∴△OAB的中位線在對(duì)稱軸上。
∴頂點(diǎn)C的縱坐標(biāo)為!喔鶕(jù)頂點(diǎn)公式,得,解得b1=3,b2=﹣3。
由圖可知,,∴b<0!郻=﹣3。
∴對(duì)稱軸為直線x=。∴點(diǎn)D的坐標(biāo)為(,0)。
設(shè)平移后的拋物線的解析式為y=x2+mx+n,
,解得。
∴平移后的拋物線的解析式為!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交與點(diǎn)A(1,0)與點(diǎn)B, 且過點(diǎn)C(0,3),

(1)求該拋物線的解析式;
(2)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?,若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值.若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.

(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長;
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一汽車租賃公司擁有某種型號(hào)的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x
3000
3200
3500
4000
y
100
96
90
80
(1)觀察表格,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù)
       
未租出的車輛數(shù)
       
租出每輛車的月收益
       
所有未租出的車輛每月的維護(hù)費(fèi)
       
(3)若你是該公司的經(jīng)理,你會(huì)將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請(qǐng)求出公司的最大月收益是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖.在平面直角坐標(biāo)系中,邊長為的正方形ABCD的頂點(diǎn)A、B在x軸上,連接OD、BD、△BOD的外心I在中線BF上,BF與AD交于點(diǎn)E.

(1)求證:△OAD≌△EAB;
(2)求過點(diǎn)O、E、B的拋物線所表示的二次函數(shù)解析式;
(3)在(2)中的拋物線上是否存在點(diǎn)P,其關(guān)于直線BF的對(duì)稱點(diǎn)在x軸上?若有,求出點(diǎn)P的坐標(biāo);
(4)連接OE,若點(diǎn)M是直線BF上的一動(dòng)點(diǎn),且△BMD與△OED相似,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線交x軸的正半軸于點(diǎn)A,交y軸于點(diǎn)B,將此拋物線向右平移4個(gè)單位得拋物線y2,兩條拋物線相交于點(diǎn)C.

(1)請(qǐng)直接寫出拋物線y2的解析式;
(2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),且滿足∠CPA=∠OBA,求出所有滿足條件的P點(diǎn)坐標(biāo);
(3)在第四象限內(nèi)拋物線y2上,是否存在點(diǎn)Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo)及h的最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川瀘州12分)如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(1,),已知拋物線y=ax2+bx+c(a≠0)經(jīng)過三點(diǎn)A、B、O(O為原點(diǎn)).

(1)求拋物線的解析式;
(2)在該拋物線的對(duì)稱軸上,是否存在點(diǎn)C,使△BOC的周長最?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如果點(diǎn)P是該拋物線上x軸上方的一個(gè)動(dòng)點(diǎn),那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)及△PAB的最大面積;若沒有,請(qǐng)說明理由.(注意:本題中的結(jié)果均保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在同一坐標(biāo)系內(nèi),一次函數(shù)與二次函數(shù)的圖象可能是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù),當(dāng)自變量x取m對(duì)應(yīng)的函數(shù)值大于0,設(shè)自變量分別取m-3,m+3 時(shí)對(duì)應(yīng)的函數(shù)值為y1,y2,則
A.y1>0,y2>0B.y1>0,y2<0 C.y1<0,y2>0D.y1<0,y2<0

查看答案和解析>>

同步練習(xí)冊(cè)答案