如圖,菱形ABCD中,AB=2,∠B=120°,點(diǎn)M是AD的中點(diǎn),點(diǎn)P由點(diǎn)A出發(fā),沿A→B→C→D作勻速運(yùn)動,到達(dá)點(diǎn)D停止,則△APM的面積y與點(diǎn)P經(jīng)過的路程x之間的函數(shù)關(guān)系的圖象大致是( )
A B C D
A
解析試題分析:分類討論:當(dāng)0≤x≤2,如圖1,作PH⊥AD于H,AP=x,根據(jù)菱形的性質(zhì)得∠A=60°,AM=2,則∠APH=30°,根據(jù)含30度的直角三角形三邊的關(guān)系得到在RtAH=x,PH=x,然后根據(jù)三角形面積公式得y=AM•PH=x;當(dāng)2<x≤4,如圖2,作BE⊥AD于E,AP+BP=x,根據(jù)菱形的性質(zhì)得∠A=60°,AM=2,AB=2,BC∥AD,則∠ABE=30°,在Rt△ABE中,根據(jù)含30度的直角三角形三邊的關(guān)系得AE=1,PH=,然后根據(jù)三角形面積公式得y=AM•BE=;
當(dāng)4<x≤6,如圖3,作PF⊥AD于F,AB+BC+PC=x,則PD=6﹣x,根據(jù)菱形的性質(zhì)得∠ADC=120°,則∠DPF=30°,在Rt△DPF中,根據(jù)含30度的直角三角形三邊的關(guān)系得DF=(6﹣x),PF=DF=(6﹣x),則利用三角形面積公式得y=AM•PF=﹣x+3,最后根據(jù)三個解析式和對應(yīng)的取值范圍對各選項(xiàng)進(jìn)行判斷.
解:當(dāng)點(diǎn)P在AB上運(yùn)動時(shí),即0≤x≤2,如圖1,
作PH⊥AD于H,AP=x,
∵菱形ABCD中,AB=2,∠B=120°,點(diǎn)M是AD的中點(diǎn),
∴∠A=60°,AM=2,
∴∠APH=30°,
在Rt△APH中,AH=AP=x,
PH=AH=x,
∴y=AM•PH=•2•x=x;
當(dāng)點(diǎn)P在BC上運(yùn)動時(shí),即2<x≤4,如圖2,
作BE⊥AD于E,AP+BP=x,
∵四邊形ABCD為菱形,∠B=120°,
∴∠A=60°,AM=2,AB=2,BC∥AD,
∴∠ABE=30°,
在Rt△ABE中,AE=AB=1,
PH=AE=,
∴y=AM•BE=•2•=;
當(dāng)點(diǎn)P在CD上運(yùn)動時(shí),即4<x≤6,如圖3,
作PF⊥AD于F,AB+BC+PC=x,則PD=6﹣x,
∵菱形ABCD中,∠B=120°,
∴∠ADC=120°,
∴∠DPF=30°,
在Rt△DPF中,DF=DP=(6﹣x),
PF=DF=(6﹣x),
∴y=AM•PF=•2•(6﹣x)=(6﹣x)=﹣x+3,
∴△APM的面積y與點(diǎn)P經(jīng)過的路程x之間的函數(shù)關(guān)系的圖象為三段:當(dāng)0≤x≤2,圖象為線段,滿足解析式y(tǒng)=x;當(dāng)2≤x≤4,圖象為平行于x軸的線段,且到x軸的距離為;當(dāng)4≤x≤6,圖象為線段,且滿足解析式y(tǒng)=﹣x+3.
故選A.
考點(diǎn):動點(diǎn)問題的函數(shù)圖象
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動到D終止,設(shè)點(diǎn)P運(yùn)動的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點(diǎn)Q運(yùn)動的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
對于函數(shù)y=-3x+1,下列結(jié)論正確的是( )
A.它的圖像必經(jīng)過點(diǎn)(-1,3) |
B.它的圖象經(jīng)過第一、二、三象限 |
C.當(dāng)x>時(shí),y<0 |
D.y的值隨x值的增大而增大 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
若ab<0,則一次函數(shù)y=ax+b與反比例函數(shù)在同一坐標(biāo)系數(shù)中的大致圖象是
A B C D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
下列函數(shù)中一次函數(shù)的個數(shù)為( )
①y=2x;②y=3+4x;③y=;④2x+3y﹣1=0.
A.1個 | B.2個 | C.3個 | D.4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
已知一次函數(shù)y=kx+b,當(dāng)0≤x≤2時(shí),對應(yīng)的函數(shù)值y的取值范圍是-2≤y≤4,則kb的值為( )
A.12 | B.-6 | C.6或12 | D.-6或-12 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com