【題目】如圖,等邊△ABC中,ADBC邊上的高,點(diǎn)M、N分別在ADAC上,且AMCN,連BM、BN,當(dāng)BM+BN最小時(shí),∠MBN_____度.

【答案】30

【解析】

如圖1中,作CH⊥BC,使得CHBC,連接NH,BH.證明△ABM≌△CHNSAS),推出BMHN,由BN+HN≥BH,可知B,NH共線時(shí),BM+BNNH+BN的值最小,求出此時(shí)∠MBN即可解決問題.

解:如圖1中,作CH⊥BC,使得CHBC,連接NH,BH

∵△ABC是等邊三角形,AD⊥BC,CH⊥BC

∴∠DAC∠DAB30°,AD∥CH

∴∠HCN∠CAD∠BAM30°,

∵AMCNABBCCH,

∴△ABM≌△CHNSAS),

∴BMHN,

∵BN+HN≥BH,

∴BN,H共線時(shí),BM+BNNH+BN的值最小,

如圖2中,當(dāng)B,NH共線時(shí),

∵△ABM≌△CHN,

∴∠ABM∠CHB∠CBH45°

∵∠ABD60°,

∴∠DBM15°

∴∠MBN45°15°30°,

當(dāng)BM+BN的值最小時(shí),∠MBN30°,

故答案為30

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(5,3)B(6,5),C(46)

(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo).

(2)將△A1B1C1向左平移6個(gè)單位,再向上平移5個(gè)單位,畫出平移后得到的△A2B2C2,并寫出點(diǎn)B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①所示是邊長(zhǎng)為的大正方形中有一個(gè)邊長(zhǎng)為的小正方形.圖②是由圖①中陰影部分拼成的一個(gè)長(zhǎng)方形.

1)設(shè)圖①中陰影部分的面積為,圖②中陰影部分的面積為,請(qǐng)用含的式子表示: ;(不必化簡(jiǎn))

2)以上結(jié)果可以驗(yàn)證的乘法公式是 ;

3)利用(2)中得到的公式,計(jì)算:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一定能確定ABC≌△DEF的條件是(

A.AB=DE,BC=EF,A=DB.A=E,AB=EF,B=D

C.A=D,AB=DE,B=ED.A=D,B=E,C=F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜邊上的中線與斜邊的比為;⑤兩個(gè)相似多邊形的面積比為,則周長(zhǎng)的比為.”中,正確的個(gè)數(shù)有( )個(gè)

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Aa0)、B0,b)、D(﹣dd),連BDx軸于E

1)如圖1,若ab、d滿足(a42+ab2+0,求△ADE的面積.

2)如圖2,在(1)的條件下,點(diǎn)Px軸上A點(diǎn)右側(cè),連BP過點(diǎn)PPQPB交直線ADQ,求證:PQPB

3)如圖3,設(shè)ABc,且d=﹣2.當(dāng)BD平分∠ABO時(shí),試求ab+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程

若該方程有實(shí)數(shù)根,求的取值范圍.

若該方程一個(gè)根為,求方程的另一個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場(chǎng)批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗(yàn)和市場(chǎng)行情,預(yù)計(jì)夏季某一段時(shí)間內(nèi),甲種水果的銷售利潤(rùn)(萬元)與進(jìn)貨量(噸)近似滿足函數(shù)關(guān)系;乙種水果的銷售利潤(rùn)(萬元)與進(jìn)貨量(噸)近似滿足函數(shù)關(guān)系(其中,為常數(shù)),且進(jìn)貨量噸時(shí),銷售利潤(rùn)萬元;進(jìn)貨量噸時(shí),銷售利潤(rùn)萬元.

(萬元)與(噸)之間的函數(shù)關(guān)系式.

如果市場(chǎng)準(zhǔn)備進(jìn)甲、乙兩種水果共噸,設(shè)乙種水果的進(jìn)貨量為噸,請(qǐng)你寫出這兩種水果所獲得的銷售利潤(rùn)之和(萬元)與(噸)之間的函數(shù)關(guān)系式.并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤(rùn)之和最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某漁業(yè)養(yǎng)殖場(chǎng),對(duì)每天打撈上來的魚,一部分由工人運(yùn)到集貿(mào)市場(chǎng)按10/斤銷售,剩下的全部按3/斤的購(gòu)銷合同直接包銷給外面的某公司:養(yǎng)殖場(chǎng)共有30名工人,每名工人只能參與打撈與到集貿(mào)市場(chǎng)銷售中的一項(xiàng)工作,且每人每天可以打撈魚100斤或銷售魚50斤,設(shè)安排x名員工負(fù)責(zé)打撈,剩下的負(fù)責(zé)到市場(chǎng)銷售.

(1)若養(yǎng)殖場(chǎng)一天的總銷售收入為y元,求yx的函數(shù)關(guān)系式;

(2)若合同要求每天銷售給外面某公司的魚至少200斤,在遵守合同的前提下,問如何分配工人,才能使一天的銷售收入最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案