【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,①abc0;②b-2a=0;③a+b+c0;④4a+c2b;⑤am2+bm+c≥a-b+c,上述給出的五個結(jié)論中,正確的結(jié)論有(

A.5B.4C.3D.2

【答案】B

【解析】

由拋物線開口方向判斷a的符號,然后由對稱軸位置判斷b的符號,再根據(jù)拋物線與y軸的交點判斷c的符號,即可判斷;根據(jù)對稱軸,可判斷;由圖像可得當(dāng)x=1時,y=a+b+c0,可判斷;當(dāng)x=-2時,y=4a-2b+c,根據(jù)對稱性可知x=-2x=0y相等,可判斷;由圖像可知,當(dāng)x=-1時,y=a-b+c為最小值,據(jù)此可判斷⑤.

拋物線開口向上,a0,對稱軸在y軸左側(cè),根據(jù)“左同右異”可知b0,拋物線與y軸交于負(fù)半軸,所以c0,所以abc0,故正確;

由圖像可知,,所以,即,故正確;

由圖像可得當(dāng)x=1時,y=a+b+c0,故錯誤;

∵拋物線對稱軸x=-1,當(dāng)x=0時,y0,

∴當(dāng)x=-2時,y=4a-2b+c0,所以4a+c2b,故正確;

由圖像可知,當(dāng)x=-1時,y=a-b+c為最小值,

當(dāng)x=m時,y= am2+bm+c,所以am2+bm+c≥a-b+c,故正確;

所以①②④⑤正確,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ACB為銳角.點D為射線BC上一動點,連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連結(jié)EC.如果AB=AC,BAC=90°

當(dāng)點D在線段BC上時(與點B不重合),如圖1,請你判斷線段CE、BD之間的位置和數(shù)量關(guān)系(直接寫出結(jié)論);

當(dāng)點D在線段BC的延長線上時,請你在圖2畫出圖形,判斷中的結(jié)論是否仍然成立,并證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸相交于兩點(點在點的左側(cè)),與軸相交于點為拋物線上一點,橫坐標(biāo)為,且

⑴求此拋物線的解析式;

⑵當(dāng)點位于軸下方時,求面積的最大值;

⑶設(shè)此拋物線在點與點之間部分(含點和點)最高點與最低點的縱坐標(biāo)之差為

①求關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;

②當(dāng)時,直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列網(wǎng)格圖中,每個小正方形的邊長均為1個單位.在RtABC中,∠C=90°,AC=3,BC=2

1)試在圖中畫出將△ABCB為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△A1BC1

2)若點B的坐標(biāo)為(-1,-4),點C的坐標(biāo)為(-3,-4),試在圖中畫出直角坐標(biāo)系,并寫出點A的坐標(biāo);

3)根據(jù)(2)的坐標(biāo)系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°后,得到線段AB,則點B的坐標(biāo)為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.

(1)從袋中隨機摸出一個球,記錄其顏色,然后放回.大量重復(fù)該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,n的值;

(2)在該不透明袋子中同時摸出兩個球,求摸出的兩個球顏色不同的概率.(要求列表或畫樹狀圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象經(jīng)過A(1,m)B(2,n)C(4,t),且點B是該二次函數(shù)圖象的頂點.

(1)m3,n4,求二次函數(shù)解析式;

(2)請在圖中描出該函數(shù)圖象上另外的兩個點,并畫出圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

平均成績

中位數(shù)

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

1)完成表中填空①   ;②   ;

2)請計算甲六次測試成績的方差;

3)若乙六次測試成績方差為,你認(rèn)為推薦誰參加比賽更合適,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑為1,ABC是⊙O的內(nèi)接等邊三角形,點D,E在圓上,四邊形BCDE為矩形,這個矩形的面積是(

A. 2 B. C. D.

查看答案和解析>>

同步練習(xí)冊答案