【題目】如圖,點C是∠ABC一邊上一點
(1)按下列要求進(jìn)行尺規(guī)作圖: ①作線段BC的中垂線DE,E為垂足.
②作∠ABC的平分線BD.
③連結(jié)CD,并延長交BA于F.
(2)若∠ABC=62°,求∠BFC的度數(shù).
【答案】
(1)解:答案如圖所示.
(2)解:∵∠ABC=62°,BD為∠ABC的平分線
∴∠ABD=∠CBD=31°
∵DE是BC的中垂線
∴BD=CD
∴∠CBD=∠DCB=31°
∴∠BFC=180°﹣∠FBC﹣∠FCB=180°﹣62°﹣31°=87°
【解析】(1)根據(jù)線段垂直平分線的畫法.角平分線的畫法,畫出圖形即可.(2)根據(jù)∠BFC=180°﹣∠FBC﹣∠FCB,求出∠FCB即可.
【考點精析】根據(jù)題目的已知條件,利用線段垂直平分線的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)2,3,4,5,x的方差與另一組數(shù)據(jù)5,6,7,8,9的方差相等,則x的值為( )
A.1
B.6
C.1或6
D.5或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】沿河岸有A,B,C三個港口,甲、乙兩船同時分別從A,B港口出發(fā),勻速駛向C港,最終到達(dá)C港.設(shè)甲、乙兩船行駛x(h)后,與B港的距離分別為y1、y2(km),y1、y2與x的函數(shù)關(guān)系如圖所示.考察下列結(jié)論: ①甲船的速度是25km/h;
②從A港到C港全程為120km;
③甲船比乙船早1.5小時到達(dá)終點;
④圖中P點為兩者相遇的交點,P點的坐標(biāo)為( );
⑤如果兩船相距小于10km能夠相互望見,那么,甲、乙兩船可以相互望見時,x的取值范圍是 <x<2.
其中正確的結(jié)論有 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個圓錐的母線長為10,側(cè)面展開圖是半圓,則圓錐的側(cè)面積是( )
A.100π
B.50π
C.20π
D.10π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若|a|=5,|b|=4,且點M(a,b)在第二象限,則點M的坐標(biāo)是( )
A.(5,4)
B.(﹣5,4)
C.(﹣5,﹣4)
D.(5,﹣4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”黃金周期間,為了促銷商品,甲、乙兩個商店都采取優(yōu)惠措施,甲店推出八折后再打八折,乙店則一次性六折優(yōu)惠,若同樣價格的商品,下列結(jié)論正確的是( )
A. 甲比乙優(yōu)惠 B. 乙比甲優(yōu)惠 C. 兩店優(yōu)惠條件相同 D. 不能進(jìn)行比較
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A(0,4)是直角坐標(biāo)系y軸上一點,P是x軸上一動點,從原點O出發(fā),沿正半軸運動,速度為每秒1個單位長度,以P為直角頂點在第一象限內(nèi)作等腰Rt△APB.設(shè)P點的運動時間為t秒.
(1)若AB∥x軸,求t的值;
(2)設(shè)點B的坐標(biāo)為(x,y),試求y關(guān)于x的函數(shù)表達(dá)式;
(3)當(dāng)t=3時,平面直角坐標(biāo)系內(nèi)有一點M(3,a),請直接寫出使△APM為等腰三角形的點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人在相同的條件下各射靶10次,他們的環(huán)數(shù)的方差分別為S甲2=2.4,S乙2=3.2,則誰的射擊更穩(wěn)定( 。
A. 甲 B. 乙 C. 兩人一樣 D. 不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com