【題目】如圖,△ABC與△DEF均為等邊三角形,O為BC、EF的中點(diǎn),則AD:BE的值為(
A. :1
B. :1
C.5:3
D.不確定

【答案】A
【解析】解:連接OA、OD,
∵△ABC與△DEF均為等邊三角形,O為BC、EF的中點(diǎn),
∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,
∴OD:OE=OA:OB= :1,
∵∠DOE+∠EOA=∠BOA+∠EOA
即∠DOA=∠EOB,
∴△DOA∽△EOB,
∴OD:OE=OA:OB=AD:BE= :1.
故選:A.
【考點(diǎn)精析】通過靈活運(yùn)用等邊三角形的性質(zhì)和相似三角形的判定與性質(zhì),掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°;相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG.

(1)求證:四邊形DEGF是平行四邊形;
(2)當(dāng)點(diǎn)G是BC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個(gè)結(jié)論中正確的是(
①若菱形ABCD的邊長(zhǎng)為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM
④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2 時(shí),菱形ABCD的邊長(zhǎng)為2.

A.①②③
B.②④⑤
C.①②⑤
D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上,AB=2,直線MN:y=x﹣4沿x軸的負(fù)方向以每秒1個(gè)單位的長(zhǎng)度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長(zhǎng)度為m,平移時(shí)間為t,m與t的函數(shù)圖象如圖2所示.

(1)點(diǎn)A的坐標(biāo)為 , 矩形ABCD的面積為;
(2)求a,b的值;
(3)在平移過程中,求直線MN掃過矩形ABCD的面積S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠計(jì)劃生產(chǎn)A,B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤如下表:

A種產(chǎn)品

B種產(chǎn)品

成本(萬元∕件)

3

5

利潤(萬元∕件)

1

2


(1)若工廠計(jì)劃獲利14萬元,問A,B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?
(2)若工廠投入資金不多于44萬元,且獲利多于14萬元,問工廠有哪幾種生產(chǎn)方案?
(3)在(2)條件下,哪種方案獲利最大?并求最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知在⊙O中,點(diǎn)C為劣弧AB上的中點(diǎn),連接AC并延長(zhǎng)至D,使CD=CA,連接DB并延長(zhǎng)DB交⊙O于點(diǎn)E,連接AE.
(1)求證:AE是⊙O的直徑;
(2)如圖2,連接EC,⊙O半徑為5,AC的長(zhǎng)為4,求陰影部分的面積之和.(結(jié)果保留π與根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖題:
(1)如圖,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°后得到△A1B1C1 . 請(qǐng)你畫出旋轉(zhuǎn)后的△A1B1C1;

(2)請(qǐng)你畫出下面“蒙古包”的左視圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的半徑OD垂直于弦AB,垂足為點(diǎn)C,連接AO并延長(zhǎng)交⊙O于點(diǎn)E,連接BE,CE.若AB=8,CD=2,則△BCE的面積為(
A.12
B.15
C.16
D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠ABC=120°,AB=10cm,點(diǎn)P是這個(gè)菱形內(nèi)部或邊上的一點(diǎn).若以P,B,C為頂點(diǎn)的三角形是等腰三角形,則P,A(P,A兩點(diǎn)不重合)兩點(diǎn)間的最短距離為cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案