【題目】發(fā)現(xiàn):
任意三個(gè)連續(xù)偶數(shù)的平方和是的倍數(shù).
驗(yàn)證:
(1)的結(jié)果是的幾倍?
(2)設(shè)三個(gè)連續(xù)偶數(shù)的中間一個(gè)為,寫(xiě)出它們的平方和,并說(shuō)明是的倍數(shù).
延伸:
(3)任意三個(gè)連續(xù)奇數(shù)的平方和,設(shè)中間一個(gè)為,被整除余數(shù)是幾呢?請(qǐng)寫(xiě)出理由.
【答案】(1)14倍;(2)見(jiàn)解析;(3)被整除后,余數(shù)為.
【解析】
(1)直接計(jì)算出算式的結(jié)果除以4即可得答案;(2)由三個(gè)連續(xù)偶數(shù)的中間一個(gè)為,可得三個(gè)偶數(shù)為2n-2、2n、2n+2,計(jì)算出三個(gè)數(shù)的和即可得答案;(3)由三個(gè)連續(xù)奇數(shù)的中間一個(gè)為+1,可得三個(gè)偶數(shù)為2n-1、2n+1、2n+3,計(jì)算出三個(gè)數(shù)的和即可得答案.
(1)(22+42+62)÷4=56÷4=14(倍).
∴的結(jié)果是的14倍.
(2)∵三個(gè)連續(xù)偶數(shù)為2n-2、2n、2n+2,
∴,
∴是的倍數(shù).
(3)∵三個(gè)連續(xù)奇數(shù)為2n-1、2n+1、2n+3,
∴=12(n+1)+11
∴被整除后,余數(shù)為;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在矩形ABCD內(nèi),將兩張邊長(zhǎng)分別為6和4的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),矩形中末被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.當(dāng)AD-AB=2時(shí),S2-S1的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了慶祝即將到來(lái)的2017年元旦,某校舉行了書(shū)法比賽,賽后整理參賽同學(xué)的成績(jī),并制作成圖表如下:
分?jǐn)?shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x≤100 | 20 | 0.1 |
請(qǐng)根據(jù)以上圖表提供的信息,解答下列問(wèn)題:
(1)這次共調(diào)查了 名學(xué)生;表中的數(shù)m= ,n= ;
(2)請(qǐng)?jiān)趫D中補(bǔ)全頻數(shù)分布直方圖;
(3)若繪制扇形統(tǒng)計(jì)圖,分?jǐn)?shù)段60≤x<70所對(duì)應(yīng)扇形的圓心角的度數(shù)是 ;
(4)如果比賽成績(jī)?cè)?/span>80分以上(含80分)可獲得獎(jiǎng)勵(lì),那么獲獎(jiǎng)概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.
(1)求直線(xiàn)CD的解析式;
(2)求拋物線(xiàn)的解析式;
(3)將直線(xiàn)CD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)45°所得直線(xiàn)與拋物線(xiàn)相交于另一點(diǎn)E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點(diǎn)P是線(xiàn)段QE上的動(dòng)點(diǎn),點(diǎn)F是線(xiàn)段OD上的動(dòng)點(diǎn),問(wèn):在P點(diǎn)和F點(diǎn)移動(dòng)過(guò)程中,△PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)水資源比較缺乏,人均水量約為世界人均水量的四分之一,其中西北地區(qū)缺水尤為嚴(yán)重.一村民為了蓄水,他把一塊矩形白鐵皮四個(gè)角各切去一個(gè)同樣大小的小正方形后制作一個(gè)無(wú)蓋水箱用于接雨水.已知白鐵皮的長(zhǎng)為280cm,寬為160cm(如圖).
(1)若水箱的底面積為16000cm2,請(qǐng)求出切去的小正方形邊長(zhǎng);
(2)對(duì)(1)中的水箱,若盛滿(mǎn)水,這時(shí)水量是多少升?(注:1升水=1000cm3水)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形中,點(diǎn)是對(duì)角線(xiàn)的中點(diǎn),點(diǎn)是上一點(diǎn),且,連接并延長(zhǎng)交于點(diǎn),過(guò)點(diǎn)作的垂線(xiàn),垂足為,交于點(diǎn).
(1)求證:;
(2)若,解答下列問(wèn)題:
①求證:;
②當(dāng)時(shí),求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將等腰△ABC繞頂點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)40°得到△A1BC1,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E、F.
求證:ΔBCF≌ΔBA1D.
當(dāng)∠C=40°時(shí),請(qǐng)你證明四邊形A1BCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對(duì)角線(xiàn)AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長(zhǎng)線(xiàn)交BA的延長(zhǎng)線(xiàn)于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com