如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.
(1)直接寫出A、B、C三點的坐標(biāo)和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PF∥DE交拋物線于點F,設(shè)點P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時,四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式.

【答案】分析:(1)已知了拋物線的解析式,當(dāng)y=0時可求出A,B兩點的坐標(biāo),當(dāng)x=0時,可求出C點的坐標(biāo).根據(jù)對稱軸x=-可得出對稱軸的解析式.
(2)PF的長就是當(dāng)x=m時,拋物線的值與直線BC所在一次函數(shù)的值的差.可先根據(jù)B,C的坐標(biāo)求出BC所在直線的解析式,然后將m分別代入直線BC和拋物線的解析式中,求得出兩函數(shù)的值的差就是PF的長.
根據(jù)直線BC的解析式,可得出E點的坐標(biāo),根據(jù)拋物線的解析式可求出D點的坐標(biāo),然后根據(jù)坐標(biāo)系中兩點的距離公式,可求出DE的長,然后讓PF=DE,即可求出此時m的值.
(3)可將三角形BCF分成兩部分來求:
一部分是三角形PFC,以PF為底邊,以P的橫坐標(biāo)為高即可得出三角形PFC的面積.
一部分是三角形PFB,以PF為底邊,以P、B兩點的橫坐標(biāo)差的絕對值為高,即可求出三角形PFB的面積.
然后根據(jù)三角形BCF的面積=三角形PFC的面積+三角形PFB的面積,可求出關(guān)于S、m的函數(shù)關(guān)系式.
解答:解:(1)A(-1,0),B(3,0),C(0,3).
拋物線的對稱軸是:直線x=1.

(2)①設(shè)直線BC的函數(shù)關(guān)系式為:y=kx+b.
把B(3,0),C(0,3)分別代入得:
解得:k=-1,b=3.
所以直線BC的函數(shù)關(guān)系式為:y=-x+3.
當(dāng)x=1時,y=-1+3=2,
∴E(1,2).
當(dāng)x=m時,y=-m+3,
∴P(m,-m+3).
在y=-x2+2x+3中,當(dāng)x=1時,y=4.
∴D(1,4)
當(dāng)x=m時,y=-m2+2m+3,
∴F(m,-m2+2m+3)
∴線段DE=4-2=2,
線段PF=-m2+2m+3-(-m+3)=-m2+3m
∵PF∥DE,
∴當(dāng)PF=ED時,四邊形PEDF為平行四邊形.
由-m2+3m=2,解得:m1=2,m2=1(不合題意,舍去).
因此,當(dāng)m=2時,四邊形PEDF為平行四邊形.
②設(shè)直線PF與x軸交于點M,由B(3,0),O(0,0),可得:OB=OM+MB=3.
∵S=S△BPF+S△CPF
即S=PF•BM+PF•OM=PF•(BM+OM)=PF•OB.
∴S=×3(-m2+3m)=-m2+m(0≤m≤3).
點評:本題主要考查了二次函數(shù)的綜合應(yīng)用,根據(jù)二次函數(shù)得出相關(guān)點的坐標(biāo)和對稱軸的解析式是解題的基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,拋物線C1,C2關(guān)于x軸對稱;拋物線C1,C3關(guān)于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點;與y相交于E、F兩點;H、G、M分別為拋物線C1,C2,C3的頂點.HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
(1)A、B、C、D、E、F、G、H、M9個點中,四個點可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點A(-2,0),點B(4,0),交y軸于點C(0,4).
(1)求拋物線的解析式,并寫出頂點D的坐標(biāo);
(2)若直線y=x交拋物線于M,N兩點,交拋物線的對稱軸于點E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設(shè)P為直線MN上的動點,過P作PF∥ED交直線MN上方的拋物線于點F.問:在直線MN上是否存在點P,使得以P,E,D,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請求出點P及相應(yīng)的點F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線的頂點坐標(biāo)為M(1,4),與x軸的一個交點是A(-1,0),與y軸交于點B,直線x=1交x軸于點N.
(1)求拋物線的解析式及點B的坐標(biāo);
(2)求經(jīng)過B、M兩點的直線的解析式,并求出此直線與x軸的交點C的坐標(biāo);
(3)若點P在拋物線的對稱軸x=1上運動,請你探索:在x軸上方是否存在這樣的P點,使精英家教網(wǎng)以P為圓心的圓經(jīng)過點A,并且與直線BM相切?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3)精英家教網(wǎng).點C是點A關(guān)于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行.直線y=-x+m過點C,交y軸于D點.
(1)求拋物線的函數(shù)表達式;
(2)點K為線段AB上一動點,過點K作x軸的垂線與直線CD交于點H,與拋物線交于點G,求線段HG長度的最大值;
(3)在直線l上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點是A(-1,0),B(3,0),則如圖可知y<0時,x的取值范圍是(  )
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習(xí)冊答案