【題目】如圖,已知的圓心為點,拋物線過點,與交于兩點,連接、,且,兩點的縱坐標(biāo)分別是2、1.
(1)請直接寫出點的坐標(biāo),并求的值;
(2)直線經(jīng)過點,與軸交于點.點(與點不重合)在該直線上,且,請判斷點是否在此拋物線上,并說明理由;
(3)如果直線與相切,請直接寫出滿足此條件的直線解析式.
【答案】(1)B(2,2),;(2)點在拋物線上,見解析;(3)滿足條件的直線解析式為:或.
【解析】
(1)證明,即可求解;
(2)點在直線上,則設(shè)的坐標(biāo)為,由,即可求解;
(3)分當(dāng)切點在軸下方、切點在軸上方兩種情況,分別求解即可.
解:(1)過點分別作軸的垂線交于點,
∵,
∴,又,
∴,
∴,
故點的坐標(biāo)分別為、,
將點坐標(biāo)代入拋物線并解得:
,
故拋物線的表達式為:;
(2)將點坐標(biāo)代入并解得:,則點,
點的坐標(biāo)分別為、、、,
則,
點在直線上,則設(shè)的坐標(biāo)為,
∵,則,
解得:或6(舍去),
故點,
把代入,
故點在拋物線上;
(3)①當(dāng)切點在軸下方時,
設(shè)直線與相切于點,直線與軸、軸分別交于點、,連接,
,,
∵,∴,
∴,即:,
解得:或(舍去),
故點,
把點坐標(biāo)代入并解得:
直線的表達式為:;
②當(dāng)切點在軸上方時,
直線的表達式為:;
故滿足條件的直線解析式為:或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(b,c為常數(shù)).
(1)若拋物線的頂點坐標(biāo)為(1,1),求b,c的值;
(2)若拋物線上始終存在不重合的兩點關(guān)于原點對稱,求c的取值范圍;
(3)在(1)的條件下,存在正實數(shù)m,n( m<n),當(dāng)m≤x≤n時,恰好有,求m,n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校舉行圖書節(jié)義賣活動,將所售款項捐給其他貧困學(xué)生.在這次義賣活動中,某班級售書情況如表:
售價 | 3元 | 4元 | 5元 | 6元 |
數(shù)目 | 14本 | 11本 | 10本 | 15本 |
下列說法正確的是( )
A. 該班級所售圖書的總收入是226元
B. 在該班級所售圖書價格組成的一組數(shù)據(jù)中,中位數(shù)是4
C. 在該班級所售圖書價格組成的一紐數(shù)據(jù)中,眾數(shù)是15
D. 在該班級所售圖書價格組成的一組數(shù)據(jù)中,方差是2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形ABCDEF內(nèi)接于⊙O,BE是⊙O的直徑,連接BF,延長BA,過F作FG⊥BA,垂足為G.
(1)求證:FG是⊙O的切線;
(2)已知FG=2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店最近有A,B兩款畢業(yè)紀念冊比較暢銷,近兩周的銷售情況是:第一周A款銷售數(shù)量是15本,B款銷售數(shù)量是10本,銷售總價是230元;第二周A款銷售數(shù)量是20本,B款銷售數(shù)量是10本,銷售總價是280元.
(1)求A,B兩款畢業(yè)紀念冊的銷售單價;
(2)若某班準(zhǔn)備用不超過529元購買這兩種款式的畢業(yè)紀念冊共60本,求最多能夠買多少本A款畢業(yè)紀念冊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,一次函數(shù)y=﹣4x+4的圖象與x軸、y軸分別交于A、B兩點.正方形ABCD的頂點C、D在第一象限,頂點D在反比例函數(shù)(k≠0)的圖象上.若正方形ABCD向左平移n個單位后,頂點C恰好落在反比例函數(shù)的圖象上,則n的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A,點B,點C均落在格點上,P為BC與網(wǎng)格線的交點,連接AP.
(Ⅰ)的長等于________;
(Ⅱ)為邊上一點,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出線段AQ,使,并簡要說明點Q的位置是如何找到的(不要求證明)_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(a﹣1)x2+3ax+1圖象上的四個點的坐標(biāo)為(x1,m),(x2,m),(x3,n),(x4,n),其中m<n.下列結(jié)論可能正確的是( )
A.若a>,則 x1<x2<x3<x4
B.若a>,則 x4<x1<x2<x3
C.若a<﹣,則 x1<x3<x2<x4
D.若a<﹣,則 x3<x2<x1<x4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察等式:;;已知按一定規(guī)律排列的一組數(shù):、、、、、.若,用含的式子表示這組數(shù)的和是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com