扇形AOB中,OA、OB是半徑,且∠AOB=90°,OA=6,點(diǎn)C是AB上異于A、B的動(dòng)點(diǎn)。過(guò)點(diǎn)C作CD⊥OA于點(diǎn)D,作CE⊥OB于點(diǎn)E,連接DE,點(diǎn)G、H在線段DE上,且DG=GH=HE.
(1)求證:OG=CH;
(2)當(dāng)點(diǎn)C在AB上運(yùn)動(dòng)時(shí),線段DE的長(zhǎng)是否為定值?若為定值,請(qǐng)求出該值;否則,請(qǐng)說(shuō)明理由;
(3)設(shè)CH,CD,求之間的函數(shù)關(guān)系式.
(1)證明:如右圖,∵CD⊥OA,CE⊥OB,
∴∠ODC=∠OEC=90°
又∵∠AOB=90°,∴四邊形OECD是矩形。
∴OD=EC,且OD//EC,∴∠ODG=∠CEH
∵DG=EH,∴△ODG≌△CEH,
∴OG=CH.   
  (2)解:線段DE的長(zhǎng)度是定值。
連接OC,點(diǎn)C是AB上的點(diǎn),OA=6。∴OC=OA=6
∵四邊形OECD是矩形,∴ DE=OC=6
(3)解:如圖,過(guò)點(diǎn)H作HF⊥CD于點(diǎn)F,

∵EC⊥CD,∴HF//EC
∴△DHF∽△DEC, ∴,∴
從而CF=CD-FD
在Rt△CHF中,CH=HF+CF,∴
在Rt△HFD中,HF=DH-DF=
 
(1)先證得四邊形OECD是矩形.再有DG=EH,即可得到△ODG≌△CEH,從而OG=CH;
(2)連接矩形OECD的對(duì)角線OC,根據(jù)矩形的對(duì)角線相等,可得DE=OC=6;
(3)過(guò)點(diǎn)H作HF⊥CD,得到△DHF∽△DEC,根據(jù)對(duì)應(yīng)邊成比例,得到DF,從而得到CF,在Rt△CHF和在Rt△HFD中利用勾股定理即可表示出之間的函數(shù)關(guān)系式。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知三個(gè)數(shù)x,  y,  z,滿足
    ▲   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

△ABC是一塊等邊三角形的廢鐵片,利用其剪裁一個(gè)正方形DEFG,使正方形的一條邊DE落在BC上,頂點(diǎn)F、G分別落在AC、AB上.
(1) 證明:△BDG≌△CEF;
(2) 設(shè)△ABC的邊長(zhǎng)為2,請(qǐng)你幫小聰求出正方形的邊長(zhǎng).(結(jié)果精確到十分位)
(3) 小穎想:不求正方形的邊長(zhǎng)我也能畫(huà)出正方形.具體作法是:如圖3
①在AB邊上任取一點(diǎn)G′,如圖作正方形G′D′E′F′;
②連接BF′并延長(zhǎng)交AC于F;
③作FE∥F′E′交BC于E,F(xiàn)G∥F′G′交AB于G,GD∥G′D′交BC于D,則四邊形DEFG即為所求.你認(rèn)為小穎的作法正確嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,如圖,D為△ABC內(nèi)一點(diǎn)連接BD、AD,以BC為邊在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,BE、CE交于E,連接DE.
(1)求證:
(2)求證:△DBE∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC是等邊三角形,被一平行于BC的矩形所截,AB被截成三等分,則圖中陰影部分的面積是△ABC的面積的(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知:如圖,在菱形ABCD中,點(diǎn)E、F分別在邊BC、CD,∠BAF=∠DAE,AE與BD交于點(diǎn)G.

(1)求證:BE=DF;
(2)當(dāng)時(shí),求證:四邊形BEFG是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,AB=AC=10cm,BC=12cm,點(diǎn)D是BC邊的中點(diǎn).點(diǎn)P從點(diǎn)B出發(fā),以acm/s(a>0)的速度沿BA勻速向點(diǎn)A運(yùn)動(dòng);點(diǎn)Q同時(shí)以1cm/s的速度從點(diǎn)D出發(fā),沿DB勻速向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為ts.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)設(shè)點(diǎn)M在AC上,四邊形PQCM為平行四邊形.
①若a=,求PQ的長(zhǎng);
②是否存在實(shí)數(shù)a,使得點(diǎn)P在∠ACB的平分線上?若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明
理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

阜寧到南京之間的距離約為240千米,在一張比例尺為的交通旅游圖上,它們之間的距離大約相當(dāng)于
A.一根火柴的長(zhǎng)度B.一根筷子的長(zhǎng)度C.一支鉛筆的長(zhǎng)度D.一支鋼筆的長(zhǎng)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖:,相交于點(diǎn),若,,則_______________。

查看答案和解析>>

同步練習(xí)冊(cè)答案