【題目】在平面直角坐標系xOy中,若P,Q為某個菱形相鄰的兩個頂點,且該菱形的兩條對角線分別與x軸,y軸平行或重合,則稱該菱形為點PQ的“相關(guān)菱形”.圖1為點PQ的“相關(guān)菱形”的一個示意圖.

已知點A的坐標為(1,4),點B的坐標為(b0.

1)若b3,則R(﹣1,0),S5,4),T64)中能夠成為點A,B的“相關(guān)菱形”頂點的是

2)若點A,B的“相關(guān)菱形”為正方形,求b的值;

3B的半徑為,點C的坐標為(2,4).若B上存在點M,在線段AC上存在點N,使點M,N的“相關(guān)菱形”為正方形,請直接寫出b的取值范圍.

【答案】1R,S;(2b=﹣35;(3)﹣5≤b≤03≤b≤8

【解析】

1)如圖1中,觀察圖象可知:R、S能夠成為點A,B的“相關(guān)菱形”頂點.

2)如圖2中,過點AAH垂直x軸于H點.根據(jù)正方形的性質(zhì)可知BH=4,由此即可解決問題.

3)根據(jù)正方形的性質(zhì),畫出圖象,即可判斷.

1)如圖1中,觀察圖象可知:R、S能夠成為點A,B相關(guān)菱形頂點.

故答案為R,S

2)如圖2中,過點AAH垂直x軸于H點.

AB相關(guān)菱形為正方形,

∴△ABH為等腰直角三角形.

A14),

BHAH4

b=﹣35

3)如圖3中,觀察圖象可知,滿足條件的b的范圍為:﹣5≤b≤03≤b≤8

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某商城銷售A,B兩種自行車.A型自行車售價為2 100/輛,B型自行車售價為1 750/輛,每輛A型自行車的進價比每輛B型自行車的進價多400元,商城用80 000元購進A型自行車的數(shù)量與用64 000元購進B型自行車的數(shù)量相等.

(1)求每輛A,B兩種自行車的進價分別是多少?

(2)現(xiàn)在商城準備一次購進這兩種自行車共100輛,設(shè)購進A型自行車m輛,這100輛自行車的銷售總利潤為y元,要求購進B型自行車數(shù)量不超過A型自行車數(shù)量的2倍,總利潤不低于13 000元,求獲利最大的方案以及最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年中國北京世界園藝博覽會已于2019429日在北京市延慶區(qū)開展,吸引了大批游客參觀游覽.五一小長假期間平均每天入園人數(shù)大約是8萬人,佳佳等5名同學組成的學習小組,隨機調(diào)查了五一假期中入園參觀的部分游客,獲得了他們在園內(nèi)參觀所用時間,并對數(shù)據(jù)進行整理,描述和分析,下面給出了部分信息:

a.參觀時間的頻數(shù)分布表如下:

時間(時)

頻數(shù)(人數(shù))

頻率

25

0.050

85

160

0.320

139

0.278

0.100

41

0.082

合計

1.000

b.參觀時間的頻數(shù)分布直方圖如圖:

根據(jù)以上圖表提供的信息,解答下列問題:

1)這里采用的調(diào)查方式是   

2)表中   ,      

3)并請補全頻數(shù)分布直方圖;

4)請你估算五一假期中平均每天參觀時間小于4小時的游客約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將拋物線m≠0)向右平移個單位長度后得到拋物線G2,點A是拋物線G2的頂點.

1)直接寫出點A的坐標;

2)過點(0)且平行于x軸的直線l與拋物線G2交于B,C兩點.

①當∠BAC90°時.求拋物線G2的表達式;

②若60°<∠BAC120°,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).下面是小文的探究過程,請補充完整:

1)函數(shù)的自變量的取值范圍是__________;

2)下表是的幾組對應(yīng)值:

如圖,在平面直角坐標系中,描出了以上表中各對應(yīng)值為坐標的點.

①觀察圖中各點的位置發(fā)現(xiàn):點,,均關(guān)于某點中心對稱,則該點的坐標為__________

②小文分析函數(shù)表達式發(fā)現(xiàn):當時,該函數(shù)的最大值為0,則該函數(shù)圖象在直線左側(cè)的最高點的坐標為__________;

3)小文補充了該函數(shù)圖象上兩個點.

①在上圖中描出這兩個點,并畫出該函數(shù)的圖象;

②寫出該函數(shù)的一條性質(zhì):__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數(shù)根.

(1)求m的取值范圍;

(2)若m為非負整數(shù),且該方程的根都是無理數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC,BD相交于點O,延長CDE,使DECD,連接AE

1)求證:四邊形ABDE是平行四邊形;

2)連接OE,若∠ABC60°,且ADDE4,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當﹣1≤x≤1時,﹣1≤y≤1,則稱這個函數(shù)為閉函數(shù)”.例如:yx,y=﹣x均是閉函數(shù)(如圖所示).已知:yax2+bx+ca≠0)是閉函數(shù),且拋物線經(jīng)過點A1,﹣1)和點B(﹣1,1.

1)請說明a、c的數(shù)量關(guān)系并確定b的取值;

2)請你確定a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

已知:如圖,在正方形ABCD中,邊AB=a1

按照以下操作步驟,可以從該正方形開始,構(gòu)造一系列的正方形,它們之間的邊滿足一定的關(guān)系,并且一個比一個。

操作步驟

作法

由操作步驟推斷(僅選取部分結(jié)論)

第一步

在第一個正方形ABCD的對角線AC上截取AE=a1,再作EFAC于點E,EF與邊BC交于點F,記CE=a2

(i)EAF≌△BAF(判定依據(jù)是①);

(ii)CEF是等腰直角三角形;

(iii)用含a1的式子表示a2為②

第二步

CE為邊構(gòu)造第二個正方形CEFG;

第三步

在第二個正方形的對角線CF上截取FH=a2,再作IHCF于點H,IH與邊CE交于點I,記CH=a3

(iv)用只含a1的式子表示a3為③

第四步

CH為邊構(gòu)造第三個正方形CHIJ

這個過程可以不斷進行下去.若第n個正方形的邊長為an,用只含a1的式子表示an為④

請解決以下問題:

(1)完成表格中的填空:

      ;   ;   ;

(2)根據(jù)以上第三步、第四步的作法畫出第三個正方形CHIJ(不要求尺規(guī)作圖).

查看答案和解析>>

同步練習冊答案