如圖,拋物線與x軸交于A(1,0)、B(-4,0)兩點(diǎn),

(1)求該拋物線的解析式;

(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使得

△QAC的周長最小?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)設(shè)此拋物線與直線在第二象限交于點(diǎn)D,平行于軸的直線與拋物線交于點(diǎn)M,與直線交于點(diǎn)N,連接BM

CM、NC、NB,是否存在的值,使四邊形BNCM的面積S最大?若存在,

請(qǐng)求出的值,若不存在,請(qǐng)說明理由.

(1) ∵拋物線y=-x2+bx+c與x軸交于A(-1,0)B(3,0)兩點(diǎn),

將A、B兩點(diǎn)坐標(biāo)代入拋物線方程,得到:

1+b+c=0

16-4b+c=0

解得:b=-3,c=4

所以,該拋物線的解析式為:y= - x2-3x+4…………(2分)

(2) 存在

可得,C(0,4),  對(duì)稱軸為直線x= - 1.5……………(1分)

當(dāng)QC+QA最小時(shí),△QAC的周長就最小

點(diǎn)A、B關(guān)于直線x= - 1.5對(duì)稱,

所以當(dāng)點(diǎn)B、Q、C在同一直線上時(shí)QC+QA最小………(1分)

可得:直線BC的解析式為 y=x+4………………………(1分)

當(dāng)x= -1.5時(shí),y=2.5

∴在該拋物線的對(duì)稱軸上存在點(diǎn)Q(-1.5,2.5),

使得△QAC的周長最小…………………………………(2分)

(3)由題意,M(m,-m2-3m+4),N(m,-m)

∴ 線段MN= -m2-3m+4-(-m)= -m2-2m+4……………(1分)

∵S四邊形BNCM=SBMN+ SCMN=MN×BO=2MN

∴S= -2m2-4m+8……………(3分)

= -2(m+1)2+10

∴當(dāng)= -1時(shí)(在內(nèi)),

四邊形BNCM的面積S最大。…………(1分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D.
(1)求該拋物線的解析式與頂點(diǎn)D的坐標(biāo);
(2)以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?
(3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,請(qǐng)指出符合條件的點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點(diǎn),且x1<x2,與y軸交于點(diǎn)C(0,-4),其中x1,x2是方程x2-4x-12=0的兩個(gè)根.
(1)求拋物線的解析式;
(2)點(diǎn)M是線段AB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作MN∥BC,交AC于點(diǎn)N,連接CM,當(dāng)△CMN的面積最大時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•歷下區(qū)一模)如圖,拋物線與x軸交于A(-1,0),B(4,0)兩點(diǎn),與y軸交于C(0,3),M是拋物線對(duì)稱軸上的任意一點(diǎn),則△AMC的周長最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與y軸交于點(diǎn)A(0,4),與x軸交于B、C兩點(diǎn).其中OB、OC是方程的x2-10x+16=0兩根,且OB<OC.
(1)求拋物線的解析式;
(2)直線AC上是否存在點(diǎn)D,使△BCD為直角三角形.若存在,求所有D點(diǎn)坐標(biāo);反之說理;
(3)點(diǎn)P為x軸上方的拋物線上的一個(gè)動(dòng)點(diǎn)(A點(diǎn)除外),連PA、PC,若設(shè)△PAC的面積為S,P點(diǎn)橫坐標(biāo)為t,則S在何范圍內(nèi)時(shí),相應(yīng)的點(diǎn)P有且只有1個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線與x軸交于A、B(6,0)兩點(diǎn),且對(duì)稱軸為直線x=2,與y軸交于點(diǎn)C(0,-4).
(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),連接MA、MC,當(dāng)△MAC的周長最小時(shí),求點(diǎn)M的坐標(biāo);
(3)點(diǎn)D(4,k)在(1)中拋物線上,點(diǎn)E為拋物線上一動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使以A、D、E、F為頂點(diǎn)的四邊形是平行四邊形,如果存在,直接寫出所有滿足條件的點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案