【題目】如圖,AB⊙O的直徑,CBD的中點(diǎn),CE⊥AB,垂足為E,BDCE于點(diǎn)F

1】求證:CF=BF

2】若AD=2,⊙O的半徑為3,求BC的長(zhǎng)

【答案】

1】連結(jié)AC,如圖

∵C是弧BD的中點(diǎn) ∴∠BDC=∠DBC

∠BDC=∠BAC

在三角形ABC中,∠ACB=90°CE⊥AB∴ ∠BCE=∠BAC,

∠BCE=∠DBC

∴ CF=BF 因此,CF=BF3

2】證法一:作CG⊥AD于點(diǎn)G

∵C是弧BD的中點(diǎn) ∴∠CAG=∠BAC,

AC∠BAD的角平分線.

∴ CE=CG,AE="AG" ,在Rt△BCERt△DCG中,CE="CG" CB=CD

∴Rt△BCE≌Rt△DCG,∴BE="DG" ,∴AE=AB-BE=AG=AD+DG6-BE=2+DG

2BE=4,即BE=2 BCE∽△BAC,

(舍去負(fù)值),7

2)證法二:∵AB⊙O的直徑,CE⊥AB

∴∠BEF=,

中,

,則

,

,

利用勾股定理得:

∵△EBC∽△ECA,即則

【解析】試題分析:連接AC,根據(jù)已知條件利用等角對(duì)等邊可以得到CF=BF;作CG⊥AD于點(diǎn)G,先利用HL判定Rt△BCE≌Rt△DCG,推出BE=DG,根據(jù)邊之間的關(guān)系可求得BE的值,再根據(jù)相似三角形的判定得到△BCE∽△BAC,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,可得到BC2=BEAB,這樣便求得BC的值,注意負(fù)值要舍去.

試題解析:(1)連接AC,如圖

∵C是弧BD的中點(diǎn)

∴∠BDC=∠DBC

∵∠BDC=∠BAC

△ABC中,∠ACB=90°CE⊥AB

∴∠BCE=∠BAC

∠BCE=∠DBC

∴CF=BF;

2)作CG⊥AD于點(diǎn)G,

∵C是弧BD的中點(diǎn)

∴∠CAG=∠BAC

AC∠BAD的角平分線.

∴CE=CG,AE=AG

Rt△BCERt△DCG中,

CE=CGCB=CD

∴Rt△BCE≌Rt△DCGHL

∴BE=DG

∴AE=AB-BE=AG=AD+DG

6-BE=2+DG

∴2BE=4,即BE=2

∵△BCE∽△BAC

∴BC2=BEAB=12

BC=±2(舍去負(fù)值)

BC=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:(2a1)22(2a+1)+3,其中a=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,將點(diǎn)P(-2,3)沿x軸方向向右平移3個(gè)單位得到點(diǎn)Q,則點(diǎn)Q的坐標(biāo)是( )
A.(-2,6)
B.(-2,0)
C.(-5,3)
D.(1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列調(diào)查中,適合用普查方式的是( 。

A. 了解某班學(xué)生“50米跑的成績(jī)B. 了解一批燈泡的使用壽命

C. 了解一批炮彈的殺傷半徑D. 調(diào)查長(zhǎng)江流域的水污染情況

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】天宮二號(hào)在太空繞地球一周大約飛行42500千米,將42500用科學(xué)記數(shù)法表示為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形一邊上的中線把原三角形一定分成兩個(gè) ( )

A. 形狀相同的三角形 B. 面積相等的三角形

C. 周長(zhǎng)相等的三角形 D. 直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年暑假,張華組織本班同學(xué)一起去看著名影星吳京自導(dǎo)自演的電影《戰(zhàn)狼2》,票價(jià)每張60元,20張以上(不含20張)可以打八折,他們一共花了1200元,他們共買了張電影票.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光年是天文學(xué)中的距離單位,1光年大約是95000億 km,這個(gè)數(shù)據(jù)用科學(xué)記數(shù)法表示是km

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=8cm,BC=16cm,點(diǎn)P從點(diǎn)A沿邊AB向點(diǎn)B1cm/s的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B沿邊BC向點(diǎn)C2cm/s的速度移動(dòng),有一點(diǎn)到終點(diǎn)運(yùn)動(dòng)即停止,設(shè)運(yùn)動(dòng)時(shí)間為t.

(1)t為何值時(shí),PBQ的面積為12cm2;

(2)若PQDQ,求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案