【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)y1=(x>0)的圖象上,頂點(diǎn)B在函數(shù)y2= (x>0)的圖象上,∠ABO=30°,則=( )
A.-3 B.3 C. D.-
【答案】A
【解析】
根據(jù)30°角所對的直角邊等于斜邊的一半,和勾股定理,設(shè)出適當(dāng)?shù)某?shù),表示出其它線段,從而得到點(diǎn)A、B的坐標(biāo),表示出k1、k2,進(jìn)而得出k2與k1的比值.
如圖,設(shè)AB交x軸于點(diǎn)C,又設(shè)AC=a.
∵AB⊥x軸 ∴∠ACO=90°
在Rt△AOC中,OC=AC·tan∠OAB=a·tan60°=a
∴點(diǎn)A的坐標(biāo)是(a,a)
同理可得 點(diǎn)B的坐標(biāo)是(a,-3a)
∴k1=a×a=a2 , k2=a×(-3a)=-3a
∴.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,AD=8.動(dòng)點(diǎn)E,F同時(shí)分別從點(diǎn)A,B出發(fā),分別沿著射線AD和射線BD的方向均以每秒1個(gè)單位的速度運(yùn)動(dòng),連接EF,以EF為直徑作⊙O交射線BD于點(diǎn)M,設(shè)運(yùn)動(dòng)的時(shí)間為t.
(1)當(dāng)點(diǎn)E在線段AD上時(shí),用關(guān)于t的代數(shù)式表示DE,DM.
(2)在整個(gè)運(yùn)動(dòng)過程中,
①連結(jié)CM,當(dāng)t為何值時(shí),△CDM為等腰三角形.
②圓心O處在矩形ABCD內(nèi)(包括邊界)時(shí),求t的取值范圍,并直接寫出在此范圍內(nèi)圓心運(yùn)動(dòng)的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形和正方形, 連接,當(dāng)時(shí), 與的關(guān)系是?
如圖2,將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),中結(jié)論是否仍然成立?若成立,請給出證明:若不成立,請說明理由;
已知,在旋轉(zhuǎn)過程中,若直線平分,請畫出相應(yīng)的圖形,并寫出其中一種情形時(shí)長的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,對角線 AC 與 BD 相交于點(diǎn) O ,點(diǎn) E , F 分別為 OB , OD 的中點(diǎn),延長 AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當(dāng) AB 與 AC 滿足什么數(shù)量關(guān)系時(shí),四邊形 EGCF 是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度y(m)與它的飛行時(shí)間x(s)滿足二次函數(shù)關(guān)系,y與x的幾組對應(yīng)值如下表所示:
x(s) | 0 | 0.5 | 1 | 1.5 | 2 | … |
y(m) | 0 | 8.75 | 15 | 18.75 | 20 | … |
(Ⅰ)求y關(guān)于x的函數(shù)解析式(不要求寫x的取值范圍);
(Ⅱ)問:小球的飛行高度能否達(dá)到22m?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠(yuǎn)流長,中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某中學(xué)德育處組織了一次全校2000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,學(xué)校德育處隨機(jī)抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:
成績x(分)分?jǐn)?shù)段 | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
頻數(shù)分布直方圖
根據(jù)所給的信息,回答下列問題:
(1)m=________;n=________;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會(huì)落在________分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計(jì)該校參加本次比賽的2000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種洗衣機(jī)在洗滌衣服時(shí),經(jīng)歷了進(jìn)水、清洗、排水、脫水四個(gè)連續(xù)的過程,其中進(jìn)水、清洗、排水時(shí)洗衣機(jī)中的水量y(升)與時(shí)間x(分鐘)之間的關(guān)系如折線圖所示.根據(jù)圖象解答下列問題:
(1)洗衣機(jī)的進(jìn)水時(shí)間是多少分鐘?清洗時(shí)洗衣機(jī)中水量為多少升?
(2)已知洗衣機(jī)的排水速度為每分鐘19升.
①求排水時(shí)洗衣機(jī)中的水量y(升)與時(shí)間x(分鐘)與之間的關(guān)系式;
②如果排水時(shí)間為2分鐘,求排水結(jié)束時(shí)洗衣機(jī)中剩下的水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù),)的圖象交于,兩點(diǎn),點(diǎn)的坐標(biāo)為(1,2).
(1)求兩個(gè)函數(shù)的表達(dá)式和點(diǎn)坐標(biāo);
(2)過點(diǎn)作軸的垂線交軸于點(diǎn),求的面積;
(3)根據(jù)圖象直接寫出當(dāng)時(shí),自變量的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com