(2013•樂山)已知關于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若△ABC的兩邊AB,AC的長是這個方程的兩個實數(shù)根.第三邊BC的長為5,當△ABC是等腰三角形時,求k的值.
分析:(1)先計算出△=1,然后根據(jù)判別式的意義即可得到結(jié)論;
(2)先利用公式法求出方程的解為x1=k,x2=k+1,然后分類討論:AB=k,AC=k+1,當AB=BC或AC=BC時△ABC為等腰三角形,然后求出k的值.
解答:(1)證明:∵△=(2k+1)2-4(k2+k)=1>0,
∴方程有兩個不相等的實數(shù)根;

(2)解:一元二次方程x2-(2k+1)x+k2+k=0的解為x=
2k+1±
1
2
,即x1=k,x2=k+1,
當AB=k,AC=k+1,且AB=BC時,△ABC是等腰三角形,則k=5;
當AB=k,AC=k+1,且AC=BC時,△ABC是等腰三角形,則k+1=5,解得k=4,
所以k的值為5或4.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.也考查了三角形三邊的關系以及等腰三角形的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•樂山模擬)如圖,已知A、B兩點的坐標分別為(8,0)、(0,-6),⊙C的圓心坐標為(0,7),半徑為5.若P是⊙C上的一個動點,線段PB與x軸交于點D,則△ABD面積的最大值是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樂山模擬)選做題:
題乙:已知關于x的一元二次方程x2-2kx+k2+2=2(1-x)有兩個實數(shù)根x1、x2
(1)求實數(shù)k的取值范圍;
(2)若方程的兩實數(shù)根x1、x2滿足|x1+x2|=x1x2-1,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樂山模擬)如圖甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分別為B、P、D,且三個垂足在同一直線上,我們把這樣的圖形叫“三垂圖”.

(1)證明:AB•CD=PB•PD.
(2)如圖乙,也是一個“三垂圖”,上述結(jié)論成立嗎?請說明理由.
(3)已知拋物線與x軸交于點A(-1,0),B(3,0),與y軸交于點(0,-3),頂點為P,如圖丙所示,若Q是拋物線上異于A、B、P的點,使得∠QAP=90°,求Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•樂山)已知關于x,y的方程組
x-2y=m
2x+3y=2m+4
的解滿足不等式組
3x+y≤0
x+5y>0
,求滿足條件的m的整數(shù)值.

查看答案和解析>>

同步練習冊答案