分析 連接AE、AG,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得EB=EA,再根據(jù)等腰三角形兩底角相等求出∠B,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠AEG=60°,同理求出∠AGE=60°,從而判斷出,△AEG為等邊三角形,再根據(jù)等邊三角形三邊都相等列式求解即可.
解答 解:如圖,連接AE、AG
∵D為AB中點,ED⊥AB,
∴EB=EA,
∴△ABE為等腰三角形,
又∵∠B=∠EAB=30°,
∴∠BAE=30°,
∴∠AEG=60°,
同理可證:∠AGE=60°,
∴△AEG為等邊三角形,
∴AE=EG=AG,
又∵AE=BE,AG=GC,
∴BE=EG=GC,
又BE+EG+GC=BC=18(cm),
∴EG=6(cm).
點評 本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),等邊三角形的判定與性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),作輔助線構造出等腰三角形與等邊三角形是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com