如圖,在邊長在2的正方形ABCD中,點(diǎn)F在x軸上一點(diǎn),CF=1,過點(diǎn)B作BF的精英家教網(wǎng)垂線,交y軸于點(diǎn)E;
(1)求過點(diǎn)E、B、F的拋物線的解析式;
(2)將∠EBF繞點(diǎn)B順時針旋轉(zhuǎn),角的一邊交y軸正半軸于點(diǎn)M,另一邊交x軸于點(diǎn)N,設(shè)BM與(1)中拋物線的另一交點(diǎn)為G,當(dāng)點(diǎn)G的橫坐標(biāo)為
6
5
時,EM與NO有怎樣的數(shù)量關(guān)系?請說明你的結(jié)論;
(3)點(diǎn)P在(1)中的拋物線上,且PE與y軸所成銳角的正切值為
3
2
,求點(diǎn)P的坐標(biāo).
分析:(1)根據(jù)正方形的邊長易求得B、F點(diǎn)坐標(biāo).若∠EBF=90°,那么∠ABE、∠CBF為同角的余角,由此可證得△ABE≌△CBF,即可求得AE的長,從而可得到E點(diǎn)坐標(biāo),從而利用待定系數(shù)法求得該拋物線的解析式.
(2)根據(jù)點(diǎn)G的橫坐標(biāo),可確定G點(diǎn)的坐標(biāo),易求得直線BG的解析式,從而得到M點(diǎn)的坐標(biāo),即可得到EM、AM的長,由(1)知AM=CN,由此可求得CN、ON的長,然后可求得EM、ON的數(shù)量關(guān)系.
(3)此題應(yīng)分兩種情況考慮:
①當(dāng)點(diǎn)P在E點(diǎn)上方時,過P作PH⊥y軸于H,連接PE,根據(jù)拋物線的解析式可設(shè)出點(diǎn)P的坐標(biāo),即可得到EH、PH的長,然后根據(jù)∠PEH的正切值求出點(diǎn)P的坐標(biāo).
②當(dāng)點(diǎn)P在E點(diǎn)下方時,方法同①.
解答:解:(1)由題意,可得點(diǎn)B(2,2);
∵CF=1,
∴F(3,0);
在正方形ABCD中,∠ABC=∠OAB=∠BCF=90°,AB=BC,
∵BE⊥BF,
∴∠EBF=90°,
∴∠EBF=∠ABC,
即∠ABE+∠EBC=∠EBC+∠CBF,
∴∠ABE=∠CBF,
∴△ABE≌△CBF;
∴E(0,1).
設(shè)過點(diǎn)E,B,F(xiàn)的拋物線的解析式為y=ax2+bx+1,則有:
4a+2b+c=2
9a+3b+c=0
c=1
,
解得
a=-
5
6
b=
13
6
c=1
;
∴該拋物線的解析式為:y=-
5
6
x2+
13
6
x+1.

(2)∵G(
6
5
,y)
在拋物線y=-
5
6
x2+
13
6
x+1上
,
y=-
5
6
(
6
5
)2+
13
6
×
6
5
+1=
16
5
,
∴G(
6
5
,
12
5
);
設(shè)過B、G的直線解析式為y=kx+b,
2k+b=2
6
5
k+b=
12
5

k=-
1
2
b=3

∴過點(diǎn)BE的直線解析式為y=-
1
2
x+3
,
∴直線y=-
1
2
x+3
與y軸交于點(diǎn)M(0,3),
∴EM=2;
可證△ABM≌△CBN,
∴CN=AM,
∴ON=1;
∴EM=2ON.
精英家教網(wǎng)

(3)點(diǎn)P在拋物線y=-
5
6
x2+
13
6
x+1
上,設(shè)P點(diǎn)的坐標(biāo)為(m,-
5
6
m2+
13
6
m+1)

精英家教網(wǎng)如圖2:①過點(diǎn)P1作P1H1⊥y軸于點(diǎn)H1,連接P1E;
∴tan∠H1EP1=
3
2
,
P1H1
H1E
=
3
2

m
-
5
6
m2+
13
6
m+1-1
=
3
2
,
解得m1=
9
5
,m2=0
(不合題意,舍去);
②過點(diǎn)P2作P2H2⊥y軸于點(diǎn)H2,連接P2E,
∴tan∠H2EP2=
3
2

P2H2
H2E
=
3
2
,
解得m3=
17
5
,m4=0
(不合題意,舍去)
當(dāng)m1=
9
5
時為
11
5

當(dāng)m3=
17
5
時為-
19
15

綜上所述,點(diǎn)P1
9
5
11
5
),P2
17
5
,-
19
15
)為所求.
點(diǎn)評:此題考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)、二次函數(shù)解析式的確定、銳角三角函數(shù)的定義等知識,同時還考查了分類討論的數(shù)學(xué)思想,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,
1
2
a
長為半徑作
DE
,
EF
,
FD
,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在邊長在2的正方形ABCD中,點(diǎn)F在x軸上一點(diǎn),CF=1,過點(diǎn)B作BF的垂線,交y軸于點(diǎn)E;
(1)求過點(diǎn)E、B、F的拋物線的解析式;
(2)將∠EBF繞點(diǎn)B順時針旋轉(zhuǎn),角的一邊交y軸正半軸于點(diǎn)M,另一邊交x軸于點(diǎn)N,設(shè)BM與(1)中拋物線的另一交點(diǎn)為G,當(dāng)點(diǎn)G的橫坐標(biāo)為數(shù)學(xué)公式時,EM與NO有怎樣的數(shù)量關(guān)系?請說明你的結(jié)論;
(3)點(diǎn)P在(1)中的拋物線上,且PE與y軸所成銳角的正切值為數(shù)學(xué)公式,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•朝陽區(qū)二模)如圖,在邊長在2的正方形ABCD中,點(diǎn)F在x軸上一點(diǎn),CF=1,過點(diǎn)B作BF的垂線,交y軸于點(diǎn)E;
(1)求過點(diǎn)E、B、F的拋物線的解析式;
(2)將∠EBF繞點(diǎn)B順時針旋轉(zhuǎn),角的一邊交y軸正半軸于點(diǎn)M,另一邊交x軸于點(diǎn)N,設(shè)BM與(1)中拋物線的另一交點(diǎn)為G,當(dāng)點(diǎn)G的橫坐標(biāo)為時,EM與NO有怎樣的數(shù)量關(guān)系?請說明你的結(jié)論;
(3)點(diǎn)P在(1)中的拋物線上,且PE與y軸所成銳角的正切值為,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點(diǎn)為圓心,數(shù)學(xué)公式長為半徑作數(shù)學(xué)公式,數(shù)學(xué)公式數(shù)學(xué)公式,求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案