如圖,在Rt△ABC中,∠C=90°,AC=BC,D是AB邊上一點(diǎn),E是在AC邊上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、C不重合),DF⊥DE,DF與射線BC相交于點(diǎn)F.
(1)如圖2,如果點(diǎn)D是邊AB的中點(diǎn),求證:DE=DF;
(2)如果AD:DB=m,求DE:DF的值;
(3)如果AC=BC=6,AD:DB=1:2,設(shè)AE=x,BF=y,
①求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
②以CE為直徑的圓與直線AB是否可相切?若可能,求出此時(shí)x的值;若不可能,請說明理由.

【答案】分析:(1)連接DC,由于△ABC是等腰直角三角形,點(diǎn)D是中點(diǎn),所以AD是∠ACB的角平分線,根據(jù)“角角邊”容易判定△CED≌△BFD,進(jìn)而證得DE=DF.
(2)先證△ADP∽△BDQ,進(jìn)而證得DQ:DP=AD:DB=m,再證△DQF∽△PDE,進(jìn)而證得DE:DF=DQ:DP=AD:DB=m.
(3)①根據(jù)已知條件,易證△DGE∽△FHD,根據(jù)相似三角形的性質(zhì),列出比例式,整理得到函數(shù)關(guān)系式.
②先假設(shè)相切,列出等式,看解的情況,若有解,則存在,若無解,則不存在.
解答:(1)證明:如圖2,連接DC.
∵∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
∵點(diǎn)D是AB中點(diǎn),
∴∠BCD=∠ACD=45°,CD=BD,
∴∠ACD=∠B=45°.
∵ED⊥DF,CD⊥AB,
∴∠EDC+∠CDF=90°,∠CDF+∠FDB=90°,
∴∠EDC=∠FDB,
∴△CED≌△BFD(ASA),
∴DE=DF;

(2)解:如圖1,作DP⊥AC,DQ⊥BC,垂足分別為點(diǎn)Q,P.
∵∠B=∠A,∠APD=∠BQD=90°,
∴△ADP∽△BDQ,
∴DP:DQ=AD:DB=m.
∵∠CPD=∠CQD=90°,∠C=90°,
∴∠QDP=90°,
∵DF⊥DE,∴∠EDF=90°,
∴∠QDF=∠PDE,
∵∠DQF=∠DPE=90°,
∴△DQF∽△DPE,
∴DE:DF=DP:DQ,
∴DE:DF=DP:DQ=AD:DB=m;

(3)解:①如備用圖1,作EG⊥AB,F(xiàn)H⊥AB,垂足分別為點(diǎn)G、H.
在Rt△ABC中,∠C=90°,AC=BC=6,
∴AB=,
∵AD:DB=1:2,
∴AD=,DB=
由∠AGE=∠BHF=90°,∠A=∠B=45°,
可得AG=EG=,BH=FH=,
GD=,HD=,
易證△DGE∽△FHD,
,
,
∴y=8-2x,
定義域是0<x≤4.
②如備用圖2,取CE的中點(diǎn)O,作OM⊥AB于M.
可得CE=6-x,AO=,OM=
若以CE為直徑的圓與直線AB相切,則
解得,
∴當(dāng)時(shí),以CE為直徑的圓與直線AB相切.
點(diǎn)評:此題作為壓軸題,綜合考查函數(shù)、方程與圓的切線,三角形相似的判定與性質(zhì)等知識,是一個(gè)大綜合題,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案