在直角三角形中,一個銳角的對邊與鄰邊的比,叫做這個銳角的( )
A.正切三角函數(shù)
B.余切三角函數(shù)
C.正弦三角函數(shù)
D.余弦三角函數(shù)
【答案】分析:根據(jù)銳角三角函數(shù)的定義解答即可.
解答:解:在直角三角形中,一個銳角的對邊與鄰邊的比,叫做這個銳角的正切三角函數(shù).
故選A.
點評:此題比較簡單,解答此題的關鍵是熟知三角函數(shù)的定義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、在直角三角形中,一個銳角的對邊與鄰邊的比,叫做這個銳角的( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)通過學習三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角正對(sad),如圖①,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sadA=底邊/腰=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad60°=
 

(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
 

(3)如圖②,已知sinA=
3
5
,其中∠A為銳角,試求sadA的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

通過學習三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sadA=
底邊
=
BC
AB
.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad60°=
1
1
;
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知cosA=
4
5
,其中∠A為銳角,試求sanA的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2014•寶山區(qū)一模)通過銳角三角比的學習,我們已經(jīng)知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長比與角的大小之間可以相互轉化.類似的我們可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖在△ABC中,AB=AC,
頂角A的正對記作sadA,這時sadA=
底邊
=
BC
AB
.我們容易知道一個角的大小與這個角的正對值也是互相唯一確定的.根據(jù)上述角的正對定義,解下列問題:
(1)sad60°=
1
1
;sad90°=
2
2

(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2

(3)試求sad36°的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果在直角三角形中,一個銳角是另一個銳角的3倍,那么這個三角形中最小的一個角等于
22.5
22.5
度.

查看答案和解析>>

同步練習冊答案