【題目】根據(jù)題意解答
(1)【閱讀發(fā)現(xiàn)】如圖①,在正方形ABCD的外側(cè),作兩個等邊三角形ABE和ADF,連結(jié)ED與FC交于點M,則圖中△ADE≌△DFC,可知ED=FC,求得∠DMC= .
(2)【拓展應(yīng)用】如圖②,在矩形ABCD(AB>BC)的外側(cè),作兩個等邊三角形ABE和ADF,連結(jié)ED與FC交于點M.
(i)求證:ED=FC.
(ii)若∠ADE=20°,求∠DMC的度數(shù).
【答案】
(1)90°
(2)(i)證明:∵△ABE為等邊三角形,
∴∠EAB=60°,EA=AB.
∵△ADF為等邊三角形,
∴∠FDA=60°,AD=FD.
∵四邊形ABCD為矩形,
∴∠BAD=∠ADC=90°,DC=AB.
∴EA=DC.
∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,
∴∠EAD=∠CDF.
在△EAD和△CDF中,
,
∴△EAD≌△CDF.
∴ED=FC
(ii)∵△EAD≌△CDF,
∴∠ADE=∠DFC=20°,
∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°
【解析】解:如圖①中,∵四邊形ABCD是正方形, ∴AD=AB=CD,∠ADC=90°,
∵△ADE≌△DFC,
∴DF=CD=AE=AD,
∵∠FDC=60°+90°=150°,
∴∠DFC=∠DCF=∠ADE=∠AED=15°,
∴∠FDE=60°+15°=75°,
∴∠MFD+∠FDM=90°,
∴∠FMD=90°,
所以答案是90°
【考點精析】關(guān)于本題考查的矩形的性質(zhì)和正方形的性質(zhì),需要了解矩形的四個角都是直角,矩形的對角線相等;正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)﹣18×(﹣2)÷3
(2)(﹣)×(﹣90)÷
(3)﹣2.5÷×(﹣);
(4)(﹣10)2﹣[16+(﹣3)2]
(5)(﹣+2)÷
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2﹣2x與x軸正半軸相交于點A,頂點為B.
(1)用含a的式子表示點B的坐標;
(2)經(jīng)過點C(0,﹣2)的直線AC與OB(O為原點)相交于點D,與拋物線的對稱軸相交于點E,△OCD≌△BED,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+2x+3與x軸的交點為A,B(點A在點B的左側(cè)),與y軸的交點為C,連結(jié)BC.點M是拋物線上A,C之間的一個動點,過點M作MN∥BC,分別交x軸、拋物線于D,N,過點M作EF⊥x軸,垂足為F,并交直線BC于點E,
(1)求點A,B,C的坐標.
(2)當點M恰好是EF的中點,求BD的長.
(3)連接DE,記△DEM,△BDE的面積分別為S1 , S2 , 當BD=1時,則S2﹣S1= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東東想把一根70 cm長的木棒放到一個長、寬、高分別為30 cm,40 cm,50 cm的木箱中,他能放進去嗎?答:______. (填“能”或“不能”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O中,點A為 中點,BD為直徑,過A作AP∥BC交DB的延長線于點P.
(1)求證:PA是⊙O的切線;
(2)若 ,AB=6,求sin∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為⊙O上的一點,P為直徑AB延長線上的一點,BH⊥CP于H交⊙O于D,∠PBH=2∠PAC.
(1)求證:PC是⊙O的切線;
(2)若sin∠P= ,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過稱重,質(zhì)量超過標準質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標準質(zhì)量10kg的用負數(shù)表示,結(jié)果記錄如下
與標準質(zhì)量的偏差(kg) | ﹣1.5 | ﹣1 | ﹣0.5 | 0 | 0.5 | 1 | 2 |
袋數(shù)(袋) | 40 | 30 | 10 | 25 | 40 | 20 | 35 |
(1)求這批面粉的總質(zhì)量;
(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com