【題目】如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進(jìn)行下列操作:

(1)若任意抽取其中一張卡片,抽到的卡片既是中心對(duì)稱圖形又是軸對(duì)稱圖形的概率是   ;

(2)若任意抽出一張不放回,然后再?gòu)挠嘞碌某槌鲆粡垼?qǐng)用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對(duì)稱圖形的概率.

【答案】(1);(2).

【解析】

(1)既是中心對(duì)稱圖形又是軸對(duì)稱圖形只有圓一個(gè)圖形,然后根據(jù)概率的意義解答即可;

(2)畫出樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解.

(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對(duì)稱圖形又是軸對(duì)稱圖形,

∴抽到的卡片既是中心對(duì)稱圖形又是軸對(duì)稱圖形的概率是

(2)根據(jù)題意畫出樹狀圖如下:

一共有12種情況,抽出的兩張卡片的圖形是中心對(duì)稱圖形的是B、C共有2種情況,

所以,P(抽出的兩張卡片的圖形是中心對(duì)稱圖形)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】王霞和爸爸媽媽到人民公園游玩,回到家后,她利用平面直角坐標(biāo)系畫出了公園的景區(qū)地圖,如圖所示.可是她忘記了在圖中標(biāo)出坐標(biāo)原點(diǎn)Ox軸,y軸.只知道游樂(lè)園D的坐標(biāo)為(1,﹣2

1)請(qǐng)畫出x軸,y軸,并標(biāo)出坐標(biāo)原點(diǎn)O

2)寫出其他各景點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn)。試探索BM和BN的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)Ax軸上,△AOC是邊長(zhǎng)為2的等邊三角形.

(1)寫出△AOC的頂點(diǎn)C的坐標(biāo):_____

(2)將△AOC沿x軸向右平移得到△OBD,則平移的距離是_____

(3)將△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△OBD,則旋轉(zhuǎn)角可以是_____

(4)連接AD,交OC于點(diǎn)E,求∠AEO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸交于點(diǎn)A(-1,0),頂點(diǎn)坐標(biāo)(1,n)與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①3a+b<0;-1≤a≤-;③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ACBD相交于點(diǎn)O,D=C,添加下列哪個(gè)條件后,仍不能使ADO≌△BCO的是( 。

A. AD=BC B. AC=BD C. OD=OC D. ABD=BAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABBC,ADDC,BAD=100°,在BC、CD上分別找一點(diǎn)M、N,當(dāng)AMN的周長(zhǎng)最小時(shí),∠AMN+ANM的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】生活中,有人喜歡把傳送的便條折成形狀,折疊過(guò)程按圖①、、、④的順序進(jìn)行(其中陰影部分表示紙條的反面):如果由信紙折成的長(zhǎng)方形紙條(圖①)長(zhǎng)為厘米,分別回答下列問(wèn)題:

如果長(zhǎng)方形紙條的寬為厘米,并且開(kāi)始折疊時(shí)起點(diǎn)與點(diǎn)的距離為厘米,那么在圖②中,________厘米;在圖④中,________厘米.

如果長(zhǎng)方形紙條的寬為厘米,現(xiàn)不但要折成圖④的形狀,而且為了美觀,希望紙條兩端超出點(diǎn)的長(zhǎng)度相等,即最終圖形是軸對(duì)稱圖形,試求在開(kāi)始折疊時(shí)起點(diǎn)與點(diǎn)的距離(結(jié)果用表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有、兩種商品,已知買一件商品要比買一件商品少元,用元全部購(gòu)買商品的數(shù)量與用元全部購(gòu)買商品的數(shù)量相同.

(1)兩種商品每件各是多少元?

(2)如果小亮準(zhǔn)備購(gòu)買、兩種商品共件,總費(fèi)用不超過(guò)元,且不低于元,問(wèn)有幾種購(gòu)買方案,哪種方案費(fèi)用最低?

查看答案和解析>>

同步練習(xí)冊(cè)答案