解方程x2+x-1=
3
x2+x
時(shí),如果設(shè)y=x2+x,那么原方程可化為( 。
A、y2+y-3=0
B、y2-y+3=0
C、y2+y+3=0
D、y2-y-3=0
分析:本題考查用換元法解分式方程的能力,可根據(jù)方程特點(diǎn)設(shè)y=x2+x,將原方程可化簡(jiǎn)為關(guān)于y的方程.
解答:解:設(shè)y=x2+x,則y-1=
3
y
;
兩邊同乘以y可得y2-y=3,
即y2-y-3=0;
故選D.
點(diǎn)評(píng):本題主要考查換元法解分式方程,用換元法解一些復(fù)雜的分式方程是比較簡(jiǎn)單的一種方法,根據(jù)方程特點(diǎn)設(shè)出相應(yīng)未知數(shù),解方程能夠使問(wèn)題簡(jiǎn)單化,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

解方程x2+5x-4=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、用配方法解方程x2-6x-7=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用配方法解方程x2-2x+
1
9
=0
,以下變形正確的是( 。
A、(x-1)2=
1
9
B、(x-1)2=
8
9
C、(x-2)2=
8
9
D、(x-
1
3
)2=2x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)解方程x2-2x-2=0.
(2)用配方法解方程x2-4x+1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用配方法解方程x2-
2
3
x+1=0
,正確的解法是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案