試題分析:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,
∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG。
∵在△ABG和△AEC中,AB=AE,∠CAE=∠BAG,AC=AG,
∴△ABG≌△AEC(SAS),∴BG=CE。故①正確。
設BG、CE相交于點N,
∵△ABG≌△AEC,∴∠ACE=∠AGB。
∵∠NCF+∠NGF=∠ACF+∠AGF=90°+90°=180°,
∴∠CNG=360°﹣(∠NCF+∠NGF+∠F)=360°﹣(180°+90°)=90°。
∴BG⊥CE。故②正確。
過點E作EP⊥HA的延長線于P,過點G作GQ⊥AM于Q,
∵AH⊥BC,∴∠ABH+∠BAH=90°。
∵∠BAE=90°,∴∠EAP+∠BAH=180°﹣90°=90°!唷螦BH=∠EAP。
∵在△ABH和△EAP中,∠ABH=∠EAP,∠AHB=∠P=90°,AB=AE,
∴△ABH≌△EAP(AAS)。∴∠EAM=∠ABC。故④正確。
∵△ABH≌△EAP,∴EP=AH。
同理可得GQ=AH!郋P=GQ。
∵在△EPM和△GQM中,∠P=∠MQG=90°,∠EMP=∠GMQ,EP=GQ,
∴△EPM≌△GQM(AAS)!郋M=GM!郃M是△AEG的中線。故③正確。
綜上所述,①②③④結論都正確。故選A。