如圖,將邊長為8cm的正方形紙片ABCD折疊,使點D落在BC邊中點E處,點A落在點F處,折痕為MN,求線段CN的長.
由題意設CN=x cm,則EN=(8-x)cm,又∵CE=DC=4cm,
∴在Rt△ECN中,EN2=EC2+CN2,即(8-x)2=42+x2,解得:x=3,即CN=3cm.
故答案為:3cm.
根據(jù)折疊的性質(zhì),只要求出DN就可以求出NE,在直角△CEN中,若設CN=x,則DN=NE=8-x,CE=4cm,根據(jù)勾股定理就可以列出方程,從而解出CN的長。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形ABCD中,點E、F在BC邊上,且BE=CF,AF、DE交于點M.
求證:AM=DM.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,設四邊形ABCD是邊長為1的正方形,以對角線AC為邊作第二個正方形ACEF、再以對角線AE為邊作笫三個正方形AEGH,如此下去….若正方形ABCD的邊長記為a1,按上述方法所作的正方形的邊長依次為a2,a3,a4,…,an,則an=  ▲  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖ABCD中, ∠C=90度,沿著直線BD折疊,使點C落在處,交AD于E,,,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,延長正方形ACBD的一邊BC至點E,使得CE=AC,連接AE則∠E=     。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖3,在矩形ABCD中,AC是對角線,將ABCD繞點B順時針旋轉(zhuǎn)90°到GBEF位置,H是EG的中點,若AB=6,BC=8,則線段CH的長為(   ).  
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,E、F分別是正方形ABCD的邊CD、AD上的點,且CE=DF,AE、BF相交于點O,下列結(jié)論①AE=BF;②AE⊥BF;③ AO=OE;  ④中,錯誤的有

A、1個       B、2個       C、3個        D、4個 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,四邊形是平行四邊形,,.求證:.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖①,在梯形ABCD中,AD∥BC,∠A=60°,動點P從A點出發(fā),以1cm/s的速度沿著A→B→C→D的方向不停移動,直到點P到達點D后才停止.已知△PAD的面積S(單位:)與點P移動的時間t(單位:s)的函數(shù)關(guān)系式如圖②所示,則點P從開始移動到停止移動一共用了 ▲ 秒(結(jié)果保留根號).

查看答案和解析>>

同步練習冊答案