直線y=x+1與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)C在坐標(biāo)軸上,若△ABC為等腰三角形,則滿足條件的點(diǎn)C最多有________ 個(gè).

7
分析:由直線y=x+1的方程,分別令y=0,x=0求出直線與x軸,y軸的交點(diǎn)A與B的坐標(biāo),然后分三種情況考慮:當(dāng)AB為底邊時(shí),顯然C與原點(diǎn)重合,此時(shí)三角形ABC為等腰三角形;當(dāng)AB為腰,A為頂點(diǎn)時(shí),以A為圓心,AB長(zhǎng)為半徑畫弧,與坐標(biāo)軸交于3點(diǎn),可得出C的位置有3處;當(dāng)AB為腰,B為頂點(diǎn)時(shí),以B為圓心,AB長(zhǎng)為半徑畫弧,與坐標(biāo)軸交于3點(diǎn),同理可得C位置也有3處,綜上,得到滿足條件C的總個(gè)數(shù).
解答:令直線y=x+1中,y=0,解得x=-1,直線y=x+1與x軸的交點(diǎn)為A(-1,0),
令x=0,解得y=1,直線y=x+1與y軸的交點(diǎn)為B(0,1),
分三種情況考慮:
①以AB為底,C在原點(diǎn);
②以AB為腰,且A為頂點(diǎn),C點(diǎn)有3種可能位置;
③以AB為腰,且B為頂點(diǎn),C點(diǎn)有3種可能位置,
則滿足條件的點(diǎn)C最多有7個(gè).
故答案為:7
點(diǎn)評(píng):本題考查了一次函數(shù)的綜合應(yīng)用,對(duì)于底和腰不等的等腰三角形,若條件中沒有明確哪邊是底哪邊是腰時(shí),應(yīng)在符合三角形三邊關(guān)系的前提下分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直線y=
12
x+b
與x軸、y軸交于不同的兩點(diǎn)A和B,S△AOB≤4,則b的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),直線y=-
3
4
x+9
與x軸,y軸分別交于B,C兩點(diǎn),拋物線y=-
1
4
x2+bx+c
經(jīng)過B,C兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為點(diǎn)A,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(0<t<5)秒.
(1)求拋物線的解析式及點(diǎn)A的坐標(biāo);
(2)以O(shè)C為直徑的⊙O′與BC交于點(diǎn)M,當(dāng)t為何值時(shí),PM與⊙O′相切?請(qǐng)說明理由.
(3)在點(diǎn)P從點(diǎn)A出發(fā)的同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā)沿BC以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)N從點(diǎn)C出發(fā)沿CA以每秒
3
10
5
個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間和點(diǎn)P相同.
①記△BPQ的面積為S,當(dāng)t為何值時(shí),S最大,最大值是多少?
②是否存在△NCQ為直角三角形的情形?若存在,求出相應(yīng)的t值;若不存在,請(qǐng)說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•蘭州)如圖,M為雙曲線y=
3
x
上的一點(diǎn),過點(diǎn)M作x軸、y軸的垂線,分別交直線y=-x+m于點(diǎn)D、C兩點(diǎn),若直線y=-x+m與y軸交于點(diǎn)A,與x軸相交于點(diǎn)B,則AD•BC的值為
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宛城區(qū)一模)如圖,直線y=-2x+2與x軸y軸分別相交于點(diǎn)A、B,四邊形ABCD是正方形,曲線y=
kx
在第一象限經(jīng)過點(diǎn)D.則k=
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•荊州模擬)已知直線y=2x+k與x軸的交點(diǎn)為(-2,0),則關(guān)于x的不等式2x+k<0的解集是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案