【題目】如圖,在函數(shù)y1=(x<0)和y2=(x>0)的圖象上,分別有A、B兩點,若ABx軸,交y軸于點C,且OAOB,SAOC=,SBOC=,則線段AB的長度=__

【答案】

【解析】

已知SAOC=,SBOC=根據(jù)反比例函數(shù)k的幾何意義可得k1=﹣1,k2=9,即可得兩反比例解析式為y=﹣,y=;設(shè)B點坐標為(,t)(t0),ABx軸,可得A點的縱坐標為t,代入y=﹣求得A點坐標為(﹣,t);再證明RtAOCRtOBC,根據(jù)相似三角形的性質(zhì)可得OC:BC=AC:OC,代入數(shù)據(jù)可得t: =:t,解得t=,由此可得A點坐標為(﹣,),B點坐標為(3,),即可求得線段AB的長度

SAOC=,SBOC=,

|k1|=, |k2|=,

k1=﹣1,k2=9,

∴兩反比例解析式為y=﹣,y=,

設(shè)B點坐標為(,t)(t0),

ABx軸,

A點的縱坐標為t,

y=t代入y=﹣x=﹣,

A點坐標為(﹣,t),

OAOB,

∴∠AOC=OBC,

RtAOCRtOBC,

OC:BC=AC:OC,即t: =:t,

t=

A點坐標為(﹣,),B點坐標為(3,),

∴線段AB的長度=3﹣(﹣)=

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】發(fā)現(xiàn)與探索

小麗發(fā)現(xiàn)通過用兩種不同的方法計算同一幾何體體積,就可以得到一個恒等式.如圖是邊長為的正方體,被如圖所示的分割線分成.

;

用不同的方法計算這個正方體的體積,就可以得到一個等式,這個等式為:________;

已知,利用上面的規(guī)律求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,A、B兩個頂點在軸的上方,C的坐標是(1,0).以點C為位似中心,x軸的下方作ABC的位似圖形,并把ABC的邊長放大到原來的2,設(shè)點B的對應(yīng)點B′的橫坐標是a,則點B的橫坐標是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅的父母開了一個小服裝店,出售某種進價為元的服裝,現(xiàn)每件元,每星期可賣件.該同學(xué)對市場作了如下調(diào)查:每降價元,每星期可多賣件;每漲價元,每星期要少賣件.

小紅已經(jīng)求出在漲價情況下一個星期的利潤(元)與售價(元)(為整數(shù))的函數(shù)關(guān)系式為,請你求出在降價的情況下的函數(shù)關(guān)系式;

在降價的條件下,問每件商品的售價定為多少時,一個星期的利潤恰好為元?

問如何定價,才能使一星期獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在△ABC中,點ED、F分別在邊AB、BC、CA上,且DE∥CA,DF∥BA.下列四個判斷中,不正確的是( )

A.四邊形AEDF是平行四邊形

B.如果∠BAC=90°,那么四邊形AEDF是矩形

C.如果AD平分∠BAC,那么四邊形AEDF是矩形

D.如果AD⊥BCAB=AC,那么四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,AC平分∠DAB,ADCDD.

(1)求證:直線CD是⊙O的切線;

(2)若AB=10,sinACD=,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正五邊形的邊長為2,連接對角線AD,BE,CE.線段AD分別與BE,CE相交于點M,N.給出下列結(jié)論:①△ABM≌△DCN;DM2=DNAD;MN=3+④四邊形ANCB為菱形.其中正確的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y2x+2成正比例,且x=1時,y=8.

解答:⑴求yx之間的函數(shù)關(guān)系式;

⑵ 在平面直角坐標系中,① 畫出 ⑴ 中的yx之間的函數(shù)關(guān)系式的圖像;

②若將此圖像繞著原點O逆時針轉(zhuǎn)90°,求出此圖像的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:在以后你的學(xué)習(xí)中,我們會學(xué)習(xí)一個定理:直角三角形斜邊上的中線等于斜邊的一半,即:如圖1,在RtABC中,∠ACB=90°,若點D是斜邊AB的中點,則CD=AB.

靈活應(yīng)用:如圖2,ABC中,∠BAC=90°,AB=3 AC=4,點DBC的中點,將ABD沿AD翻折得到AED,連接BE CE.

1)求AD的長;

2)判斷BCE的形狀;

3)求CE的長.

查看答案和解析>>

同步練習(xí)冊答案