【題目】如圖,在菱形ABCD中,∠DAB=45°,AB=4,點(diǎn)P為線段AB上一動(dòng)點(diǎn),過點(diǎn)P作PE⊥AB交直線AD于點(diǎn)E,將∠A沿PE折疊,點(diǎn)A落在F處,連接DF,CF,當(dāng)ΔCDF為直角三角形時(shí),線段AP的長為__________.
【答案】或
【解析】
分兩種情形討論:①如圖1,當(dāng)DF⊥AB時(shí),△CDF是直角三角形;②如圖2,當(dāng)CF⊥AB時(shí),△DCF是直角三角形,分別求出即可.
分兩種情況討論:①如圖1,當(dāng)DF⊥AB時(shí),△CDF是直角三角形.
∵在菱形ABCD中,AB=4,∴CD=AD=AB=4.
在Rt△ADF中,∵AD=4,∠DAB=45,DF=AF=2,∴APAF.
②如圖2,當(dāng)CF⊥AB時(shí),△DCF是直角三角形.
在Rt△CBF中,∵∠CFB=90°,∠CBF=∠A=45°,BC=4,∴BF=CF=2,∴AF=4+2,∴APAF=2.
綜上所述:線段AP的長為或2.
故答案為:或2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知開口向下的拋物線y=ax2-2ax+2與y軸的交點(diǎn)為A,頂點(diǎn)為B,對稱軸與x軸的交點(diǎn)為C,點(diǎn)A與點(diǎn)D關(guān)于對稱軸對稱,直線BD與x軸交于點(diǎn)M,直線AB與直線OD交于點(diǎn)N.
(1)求點(diǎn)D的坐標(biāo).
(2)求點(diǎn)M的坐標(biāo)(用含a的代數(shù)式表示).
(3)當(dāng)點(diǎn)N在第一象限,且∠OMB=∠ONA時(shí),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點(diǎn)和點(diǎn)為圓心,為圓心,大于號的長為半徑面狐,兩弧交于點(diǎn),:②做直線,且恰好經(jīng)過點(diǎn),與交于點(diǎn),連接,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),CE=CB,CD=5,.
求:(1)BC的長.
(2)tanE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳生活,綠色出行”的理念已深入人心,現(xiàn)在越來越多的人選擇騎自行車上下班或外出旅游.周末,小紅相約到郊外游玩,她從家出發(fā)0.5小時(shí)后到達(dá)甲地,玩一段時(shí)間后按原速前往乙地,剛到達(dá)乙地,接到媽媽電話,快速返回家中.小紅從家出發(fā)到返回家中,行進(jìn)路程y(km)隨時(shí)間x(h)變化的函數(shù)圖象大致如圖所示.
(1)小紅從甲地到乙地騎車的速度為 km/h;
(2)當(dāng)1.5≤x≤2.5時(shí),求出路程y(km)關(guān)于時(shí)間x(h)的函數(shù)解析式;并求乙地離小紅家多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場銷售,經(jīng)市場調(diào)查發(fā)現(xiàn),草莓銷售不會(huì)虧本,且每天的銷售量y(千克)與銷售單價(jià)x(元/千克)之間函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當(dāng)該品種草莓的定價(jià)為多少時(shí),每天銷售獲得利潤最大?最大利潤是多少?
(3)某村今年草莓采摘期限30天,預(yù)計(jì)產(chǎn)量6000千克,則按照(2)中的方式進(jìn)行銷售,能否銷售完這批草莓?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長線交于點(diǎn)F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為12cm,點(diǎn)B,D之間的距離為16m,則線段AB的長為
A. B. 10cmC. 20cmD. 12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));⑤當(dāng)﹣1<x<3時(shí),y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com