【題目】如圖,拋物線y=﹣x2+bx+c與直線y= x+2交于C、D兩點,其中點C在y軸上,點D的坐標為(3, ).點P是y軸右側的拋物線上一動點,過點P作PE⊥x軸于點E,交CD于點F.
(1)求拋物線的解析式;
(2)若點P的橫坐標為m,當m為何值時,以O、C、P、F為頂點的四邊形是平行四邊形?請說明理由.
(3)若存在點P,使∠PCF=45°,請直接寫出相應的點P的坐標.
【答案】
(1)
解:在直線解析式y(tǒng)= x+2中,令x=0,得y=2,
∴C(0,2).
∵點C(0,2)、D(3, )在拋物線y=﹣x2+bx+c上,
∴ ,
解得b= ,c=2,
∴拋物線的解析式為:y=﹣x2+ x+2.
(2)
解:∵PF∥OC,且以O、C、P、F為頂點的四邊形是平行四邊形,
∴PF=OC=2,
∴將直線y= x+2沿y軸向上、下平移2個單位之后得到的直線,與拋物線y軸右側的交點,即為所求之交點.
由答圖1可以直觀地看出,這樣的交點有3個.
將直線y= x+2沿y軸向上平移2個單位,得到直線y= x+4,
聯(lián)立 ,
解得x1=1,x2=2,
∴m1=1,m2=2;
將直線y= x+2沿y軸向下平移2個單位,得到直線y= x,
聯(lián)立 ,
解得x3= ,x4= (在y軸左側,不合題意,舍去),
∴m3= .
∴當m為值為1,2或 時,以O、C、P、F為頂點的四邊形是平行四邊形.
(3)
解:存在.
理由:設點P的橫坐標為m,則P(m,﹣m2+ m+2),F(xiàn)(m, m+2).
如答圖2所示,過點C作CM⊥PE于點M,則CM=m,EM=2,
∴FM=yF﹣EM= m,
∴tan∠CFM=2.
在Rt△CFM中,由勾股定理得:CF= m.
過點P作PN⊥CD于點N,
則PN=FNtan∠PFN=FNtan∠CFM=2FN.
∵∠PCF=45°,
∴PN=CN,
而PN=2FN,
∴FN=CF= m,PN=2FN= m,
在Rt△PFN中,由勾股定理得:PF= = m.
∵PF=yP﹣yF=(﹣m2+ m+2)﹣( m+2)=﹣m2+3m,
∴﹣m2+3m= m,
整理得:m2﹣ m=0,
解得m=0(舍去)或m= ,
∴P( , );
同理求得,另一點為P( , ).
∴符合條件的點P的坐標為( , )或( , ).
【解析】(1)首先求出點C的坐標,然后利用待定系數(shù)法求出拋物線的解析式;(2)本問采用數(shù)形結合的數(shù)學思想求解.將直線y= x+2沿y軸向上或向下平移2個單位之后得到的直線,與拋物線y軸右側的交點,即為所求之交點.由答圖1可以直觀地看出,這樣的交點有3個.聯(lián)立解析式解方程組,即可求出m的值;(3)本問符合條件的點P有2個,如答圖2所示,注意不要漏解.在求點P坐標的時候,需要充分挖掘已知條件,構造直角三角形或相似三角形,解方程求出點P的坐標.
【考點精析】根據題目的已知條件,利用二次函數(shù)的圖象和二次函數(shù)的性質的相關知識可以得到問題的答案,需要掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,河邊有A,B兩個村莊,A村距河邊10 m,B村距河邊30 m,兩村平行于河邊方向的水平距離為30 m,現(xiàn)要在河邊建一抽水站,需鋪設管道抽水到A村和B村.
(1)求鋪設管道的最短長度是多少,請畫圖說明;
(2)若鋪設管道每米需要500元,則最低費用為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是某中學八年級的1000名學生最喜歡的球類活動統(tǒng)計表:
最喜歡的 球類活動 | 籃球 | 排球 | 足球 | 乒乓球 | 其他 |
人數(shù) | 185 | 175 | 260 | 330 | 50 |
(1)哪種球類運動最受歡迎?
(2)哪兩種球類運動受歡迎的程度差不多?
(3)八年級學生最喜歡的各類球類活動的頻率各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解初三年級1000名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據統(tǒng)計數(shù)據繪制了如下兩幅尚不完整的統(tǒng)計圖.
解答下列問題:
(1)這次抽樣調查的樣本容量是 , 并補全頻數(shù)分布直方圖;
(2)C組學生的頻率為 , 在扇形統(tǒng)計圖中D組的圓心角是度;
(3)請你估計該校初三年級體重超過60kg的學生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新世紀廣場進貨員預測一種應季襯衫能暢銷市場,就用8萬元購進這種襯衫,面市后果然供不應求,商場又用17.6萬元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了4元,商場銷售這種襯衫時每件定價都是58元,最后剩下的150件按八折銷售,很快售完,在這兩筆生意中,商場共贏利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C,E,F(xiàn),B在同一直線上,點A,D在BC異側,AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=-2x+6與x軸交于點A,與y軸交于點B.
(1)點A的坐標為________,點B的坐標為________.
(2)求△AOB的面積.
(3)直線AB上是否存在一點C(點C與點B不重合),使△AOC的面積等于△AOB的面積?若存在,求出點C的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com