【題目】在班上組織的“元旦迎新晚會(huì)”中,小麗和小芳都想當(dāng)節(jié)目主持人,但現(xiàn)在只有一個(gè)名額.小芳想出了一個(gè)用游戲來選人的辦法,她將一個(gè)轉(zhuǎn)盤平均分成份,如圖所示.游戲規(guī)定:隨意轉(zhuǎn)動(dòng)轉(zhuǎn)盤,若指針指到偶數(shù),則小麗去;若指針指到奇數(shù),則小芳去.
指針指到偶數(shù)的概率是多少?指針指到奇數(shù)的概率是多少?
這個(gè)游戲?qū)﹄p方公平嗎?為什么?
若游戲不公平,請(qǐng)你修改轉(zhuǎn)盤中的數(shù)字,使得游戲?qū)﹄p方公平.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點(diǎn),
求一次函數(shù)和反比例函數(shù)的表達(dá)式;
求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等腰直角三角形,其中∠C=90°,AC=BC. D是BC上任意一點(diǎn)(點(diǎn)D與點(diǎn)B,C都不重合),連接AD,CF⊥AD,交AD于點(diǎn)E,交AB于點(diǎn)F,BG⊥BC交CF的延長線于點(diǎn)G.
(1)依題意補(bǔ)全圖形,并寫出與BG相等的線段.
(2)當(dāng)點(diǎn)D為線段BC中點(diǎn)時(shí),連接DF .求證:∠BDF=∠CDE.
(3)當(dāng)點(diǎn)C和點(diǎn)F關(guān)于直線AD成軸對(duì)稱時(shí),直接寫出線段CE,DE,AD三者之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與坐標(biāo)軸交點(diǎn)的坐標(biāo)分別為,,.
求此函數(shù)的解析式;
求拋物線的開口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo);
根據(jù)圖象直接寫出時(shí)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)你的經(jīng)驗(yàn),下列事件發(fā)生的可能性哪個(gè)大哪個(gè)小?根據(jù)你的想法,把這些事件的序號(hào)按發(fā)生的可能性從小到大的順序排列________.
從裝有個(gè)紅球和個(gè)黃球的袋子中摸出的個(gè)球恰好是紅球;
一副去掉大、小王的撲克牌中,隨意抽取張,抽到的牌是紅桃;
水中撈月;
太陽從東方升起;
隨手翻一下日歷,翻到的剛好是周二.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對(duì)面人行道宣傳墻上的社會(huì)主義核心價(jià)值觀標(biāo)語,其具體信息匯集如下:
如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請(qǐng)根據(jù)上述信息求標(biāo)語CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中點(diǎn),AE與BD相交于點(diǎn)F,連接DE.
(1)求證:△ABE≌△BCD;
(2)判斷線段AE與BD的數(shù)量關(guān)系及位置關(guān)系,并說明理由;
(3)若CD=1,試求△AED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】同時(shí)拋擲兩枚質(zhì)地均勻的骰子,骰子的六個(gè)面分別刻有1到6的點(diǎn)數(shù),朝上的面的點(diǎn)數(shù)中,一個(gè)點(diǎn)數(shù)能被另一個(gè)點(diǎn)數(shù)整除的概率是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點(diǎn),點(diǎn)E在BC邊上,且BE=BD,連接AE、DE、DC。
(1)求證:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BCD的度數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com