如圖所示,以點(diǎn)O為旋轉(zhuǎn)中心,將∠1按順時(shí)針方向旋轉(zhuǎn)110°得到∠2,若∠1=40°,則∠2的余角為    度.
【答案】分析:根據(jù)旋轉(zhuǎn)的性質(zhì)和余角的定義,解答即可;
解答:解:∵∠2由∠1按順時(shí)針方向旋轉(zhuǎn)110°得到,且∠1=40°,
∴∠2=∠1=40°,
∴∠2的余角為:90°-40°=50°.
故答案為:50°.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前、后的圖形全等和余角的定義:如果兩個(gè)角的和等于90°(直角),就說(shuō)這兩個(gè)角互為余角.即其中一個(gè)角是另一個(gè)角的余角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:013

如圖所示,正六邊形ACDEFB,下列說(shuō)法正確的個(gè)數(shù)為

[  ]

(1)可以看做是正繞O點(diǎn)連續(xù)旋轉(zhuǎn)5次旋轉(zhuǎn)角為60°所形成的圖形

(2)可看做是菱形ABOC線O點(diǎn)連續(xù)旋轉(zhuǎn)2次,旋轉(zhuǎn)角為120°所形成的圖形

(3)可以看做是四邊形ABFC和四邊形DEFC組成,且四邊形DEFC是由四邊形ABFC以CF為所在的直線為對(duì)稱軸向右翻折180°得到的圖形

(4)正六邊形ACDEFB的對(duì)稱軸有三條,分別是AE、BD、CF

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:解答題

如圖所示,平面直角坐標(biāo)系中,△ABC是等邊三角形,其中,點(diǎn)A、B、C的坐標(biāo)分別為(-3,-1)、(-3,-3)、(-3+,-2),F(xiàn)以y軸為對(duì)稱軸作△ABC的對(duì)稱圖形,得△A1B1C1,再以x軸為對(duì)稱軸作△A1B1C1的對(duì)稱圖形,得△A2B2C2。
(1)直接寫出Cl、C2的坐標(biāo);
(2)能否通過一次旋轉(zhuǎn)將△ABC旋轉(zhuǎn)到△A2B2C2的位置?你若認(rèn)為能,請(qǐng)作出肯定的回答,并直接寫出旋轉(zhuǎn)的度數(shù);你若認(rèn)為不能,請(qǐng)作出否定回答。(不必說(shuō)明理由)
(3)設(shè)當(dāng)△ABC的位置發(fā)生變化時(shí),△A2B2C2、△A1B1C1與△ABC之間的對(duì)稱關(guān)系始終保持不變,
①當(dāng)△ABC向上平移多少個(gè)單位長(zhǎng)度時(shí),△A1B1C1與△A2B2C2完全重合?并直接寫出此時(shí)點(diǎn)C的坐標(biāo);
②將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)角(0°≤a≤180°),△A1B1C1與△A2B2C2完全重合,此時(shí)的值是多少?點(diǎn)C的坐標(biāo)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案