【題目】在平面直角坐標系,直線與y軸交于點A,與雙曲線交于點.
(1)求點B的坐標及k的值;
(2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若的面積為6,求直線CD的表達式.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2-2x+m-1=0.
(1)若此方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;
(2)當Rt△ABC的斜邊長c=,且兩直角邊a和b恰好是這個方程的兩個根時,求Rt△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB為⊙O的直徑,點C為⊙O上一點,CD平分∠ACB交⊙O于點D,交AB于點E.
(1)求證:△ABD為等腰直角三角形;
(2)如圖2,ED繞點D順時針旋轉(zhuǎn)90°,得到DE′,連接BE′,證明:BE′為⊙O的切線;
(3)如圖3,點F為弧BD的中點,連接AF,交BD于點G,若DF=1,求AG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,下列結論:①abc>0;②2a+b=0;③a﹣b+c>0;④當x≠1時,a+b>ax2+bx;⑤4ac<b2.其中正確的有( 。﹤
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3與x軸交于A(﹣3,0),B(l,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)點P是拋物線上的動點,且滿足S△PAO=2S△PCO,求出P點的坐標;
(3)連接BC,點E是x軸一動點,點F是拋物線上一動點,若以B、C、E、F為頂點的四邊形是平行四邊形時,請直接寫出點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=6,AC=8,BC=10,P為邊BC上一動點(且點P不與點B、C重合),PE⊥AB于E,PF⊥AC于F,M為EF中點.設AM的長為x,則x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).
其中正確的結論有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,雙曲線l:y=(x>0)過點A(a,b),B(2,1)(0<a<2);過點A作AC⊥x軸,垂足為C.
(1)求l的解析式;
(2)當△ABC的面積為2時,求點A的坐標;
(3)點P為l上一段曲線AB(包括A,B兩點)的動點,直線l1:y=mx+1過點P;在(2)的條件下,若y=mx+1具有y隨x增大而增大的特點,請直接寫出m的取值范圍.(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自2008年實施國家知識產(chǎn)權戰(zhàn)略以來,我國具有獨立知識產(chǎn)權的發(fā)明專利日益增多.下圖顯示了2010﹣2013年我國發(fā)明專利申請量占世界發(fā)明專利申請量的比重.根據(jù)統(tǒng)計圖提供的信息,下列說法不合理的是( 。
A. 統(tǒng)計圖顯示了2010﹣2013年我國發(fā)明專利申請量占世界發(fā)明專利申請量的比重的情況
B. 我國發(fā)明專利申請量占世界發(fā)明專利申請量的比重,由2010年的19.7%上升至2013年的32.1%
C. 2011年我國發(fā)明專利申請量占世界發(fā)明專利申請量的比重是28%
D. 2010﹣2013年我國發(fā)明專利申請量占世界發(fā)明專利申請量的比重逐年增長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com