【題目】如圖,△OAB中,OA=OB=10,∠AOB=80°,以點O為圓心,6為半徑的優(yōu)弧弧MN分別交OA、OB于點M,N.
(1)點P在右半弧上(∠BOP是銳角),將OP繞點O逆時針旋轉(zhuǎn)80°得,求證:AP=BP;
(2)點T在左半弧上,若AT與弧相切,求點T到OA的距離;
(3)設(shè)點Q在優(yōu)弧弧MN上,當(dāng)△AOQ的面積最大時,直接寫出∠BOQ的度數(shù).
【答案】(1)答案見解析;(2);(3)當(dāng)∠BOQ的度數(shù)為10°或170°時,△AOQ的面積最大.
【解析】
試題(1)首先根據(jù)已知得出∠AOP=∠BOP′,進而得出△AOP≌△BOP′,即可得出答案;
(2)利用切線的性質(zhì)得出∠ATO=90°,再利用勾股定理求出AT的長,進而得出TH的長即可得出答案;
(3)當(dāng)OQ⊥OA時,△AOQ面積最大,且左右兩半弧上各存在一點分別求出即可.
試題解析:(1)∵∠AOP=∠AOB+∠BOP=80°+∠BOP,
∠BOP′=∠POP′+∠BOP=80°+∠BOP,
∴∠AOP=∠BOP′,
∵在△AOP和△BOP′中,,
∴△AOP≌△BOP′(SAS),
∴AP=BP′;
(2)連接OT,過點T作TH⊥OA于點H,
∵AT與⊙O相切,∴∠ATO=90°,
∴AT==8,
∵×OA×TH=×AT×OT,
∴×10×TH=×8×6,解得:TH=,
∴點T到OA的距離為;
(3)如圖,當(dāng)OQ⊥OA時,△AOQ的面積最大,理由如下:
當(dāng)Q點在優(yōu)弧左側(cè)上,
∵OQ⊥OA,
∴QO是△AOQ中最長的高,則△AOQ的面積最大,
∴∠BOQ=∠AOQ+∠AOB=90°+80°=170°,
當(dāng)Q點在優(yōu)弧MN右側(cè)上,
∵OQ⊥OA,
∴QO是△AOQ中最長的高,則△AOQ的面積最大,
∴∠BOQ=∠AOQ-∠AOB=90°-80°=10°,
綜上所述:當(dāng)∠BOQ的度數(shù)為10°或170°時,△AOQ的面積最大.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)舉行“慶祝中華人民共和國成立70周年”知識預(yù)賽,學(xué)生會把成績(分)分成五組:A組:;B組:;C組:;D組:;E組:.
統(tǒng)計后繪制成如下兩個統(tǒng)計圖(不完整).
(1)直接填空:
①的值為_________;
②在圖2中,組的扇形圓心角的度數(shù)為_________.
(2)在圖1中,畫出所對應(yīng)的條形圖;
(3)若學(xué)生會計劃從預(yù)賽中選拔前30名進入復(fù)賽,則進入復(fù)賽的成績應(yīng)不低于多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】興發(fā)服裝店老板用4500元購進一批某款T恤衫,由于深受顧客喜愛,很快售完,老板又用4950元購進第二批該款式T恤衫,所購數(shù)量與第一批相同,但每件進價比第一批多了9元.
(1)第一批該款式T恤衫每件進價是多少元?
(2)老板以每件120元的價格銷售該款式T恤衫,當(dāng)?shù)诙?/span>T恤衫售出時,出現(xiàn)了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于650元,剩余的T恤衫每件售價至少要多少元?(利潤=售價﹣進價)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的頂點O在坐標(biāo)原點,頂點A在x軸上,∠B=120°,OA=2,將菱形OABC繞原點順時針旋轉(zhuǎn)105°至OA′B′C′的位置,則點B′的坐標(biāo)為( )
A. (,) B. (,) C. (2,-2) D. (,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:一般地,個相同的因數(shù)相乘 ,記為.如,此時,叫做以為底的對數(shù),記為(即).一般地,若,(且,),則叫做以為底的對數(shù),記為(即).如,則叫做以為底的對數(shù),記為(即).
(1)計算以下各對數(shù)的值:__________,__________,__________.
(2)觀察(1)中三數(shù)、,之間滿足怎樣的關(guān)系式,、、之間又滿足怎樣的關(guān)系式;
(3)由(2)的結(jié)果,你能歸納出一個一般性的結(jié)論嗎?__________.(且,,)
(4)根據(jù)冪的運算法則:以及對數(shù)的含義證明上述結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列的網(wǎng)格圖中.每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中作出△ABC以A為旋轉(zhuǎn)中心,沿順時針方向旋轉(zhuǎn)90°后的圖形△AB1C1;
(2)若點B的坐標(biāo)為(-3,5),試在圖中畫出直角坐標(biāo)系,并標(biāo)出A、C兩點的坐標(biāo);
(3)根據(jù)(2)中的坐標(biāo)系作出與△ABC關(guān)于原點對稱的圖形△A2B2C2,并標(biāo)出B2、C2兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個正整數(shù)m能寫成m=(a﹣b)(a+b)(a、b均為正整數(shù),且a≠b),則稱m為“完美數(shù)”,a、b為m的一個完美變形,在m的所有完美變形中,若a2+b2最大,則稱a、b為m的最佳完美變形,此時F(m)=a2+b2.例如:12=(4+2)(4﹣2),12為“完美數(shù)”,4和2為12的一個完美變形,32=(9+7)(9﹣7)=(6+2)(6﹣2),因為92+72>62+22,所以9和7是32的最佳完美變形,所以F(32)=130.
(1)8 (填“是”或“不是”)完美數(shù);10 (填“是”或“不是”)完美數(shù);13 (填“是”或“不是”)完美數(shù);
(2)求F(48);
(3)若一個兩位數(shù)n的十位數(shù)字和個位數(shù)字分別為x,y(1≤x≤y≤9),n為“完美數(shù)”且x+y能被8整除,求F(n)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年11月20日-23日,首屆世界大會在北京舉行.某校的學(xué)生開展對于知曉情況的問卷調(diào)查,問卷調(diào)查的結(jié)果分為、、、四類,其中類表示“非常了解”,類表示“比較了解”,類表示“基本了解”,類表示“不太了解”,并把調(diào)查結(jié)果繪制成如圖所示的兩個統(tǒng)計圖表(不完整).
根據(jù)上述信息,解答下列問題:
(1)這次一共調(diào)查了多少人;
(2)求“類”在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)請將條形統(tǒng)計圖補充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點D、點E為BC邊上兩點,且AC=DC,
(1)若∠EAC=∠EAF,EF⊥AB且AB=5,BC=4,求線段DE的長度;
(2)若EF⊥AD于點P,CF⊥AE于點Q,且AE=CF,求證:DE+PF=AP
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com