如圖,在四邊形ABCD中,對(duì)角線AC平分∠BAD,AB>AD,試判斷AB-AD與CD-CB的大小關(guān)系,并證明你的結(jié)論.
解:結(jié)論:________
證明:

AB-AD>CD-CB
分析:在AB上取一點(diǎn)E使AE=AD,連接EC,則CE=CD,AB-AD=BE CD-CB=CE-CB,△CBE中,CE-CB<BE,所以(AB-AD)>(CD-CB).
解答:解:AB-AD>CD-CB,
在AB上取一點(diǎn)E使AE=AD,連接EC,
∵AD=AE,∠EAC=∠DAC,AC=AC,
∴△AEC≌△ADC,
∴CE=CD,
∴AB-AD=BE CD-CB=CE-CB,
在△CBE中,CE-CB<BE,所以(AB-AD)>(CD-CB),
故答案為:(AB-AD)>CD-CB.
點(diǎn)評(píng):本題主要考查三角形邊角關(guān)系和角平分線的定義的知識(shí)點(diǎn),解答本題的關(guān)鍵是熟練運(yùn)用三角形中大邊對(duì)應(yīng)大角的關(guān)系,此題難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案