(2013•椒江區(qū)一模)我們把弧長(zhǎng)等于半徑的扇形叫等邊扇形.如圖,扇形OAB是等邊扇形,設(shè)OA=R,下列結(jié)論中:①∠AOB=60°;②扇形的周長(zhǎng)為3R;③扇形的面積為
1
2
R2
;④點(diǎn)A與半徑OB中點(diǎn)的連線(xiàn)垂直O(jiān)B;⑤設(shè)OA、OB的垂直平分線(xiàn)交于點(diǎn)P,以P為圓心,PA為半徑作圓,則該圓一定會(huì)經(jīng)過(guò)扇形的弧AB的中點(diǎn).其中正確的個(gè)數(shù)為( 。
分析:根據(jù)弧長(zhǎng)的計(jì)算公式判斷①錯(cuò)誤;
根據(jù)扇形的周長(zhǎng)定義判斷②正確;
根據(jù)S扇形=
1
2
lR(其中l(wèi)為扇形的弧長(zhǎng))判斷③正確;
先由等邊扇形的定義得出AB<OA,再根據(jù)等腰三角形三線(xiàn)合一的性質(zhì)得出AM與OB不垂直,判斷④錯(cuò)誤;
由線(xiàn)段垂直平分線(xiàn)的性質(zhì)及三角形兩邊之和大于第三邊得出OP=PA>
1
2
OA,又OA=OC,OP+PC=OC,則PC<
1
2
OC<OP=AP,即PC<圓P的半徑,判斷⑤錯(cuò)誤.
解答:解:①設(shè)∠AOB=n°,
∵OA=OB=
AB
=R,
∴R=
nπR
180
,
∴n=
180
π
<60,故①錯(cuò)誤;

②扇形的周長(zhǎng)為:OA+OB+
AB
=R+R+R=3R,故②正確;

③扇形的面積為:
1
2
AB
•OA=
1
2
R•R=
1
2
R2
,故③正確;

④如圖,設(shè)半徑OB的中點(diǎn)為M,連接AM.
∵OA=OB=
AB
=R,
∴AB<R=OA,
∵OM=MB,
∴AM與OB不垂直,故④錯(cuò)誤;

⑤如圖,設(shè)弧AB的中點(diǎn)為C.
∵OP=PA>
1
2
OA,
∵OA=OC,
∴OP>
1
2
OC,
∵OP+PC=OC,
∴PC<
1
2
OC<OP=AP,
即PC<圓P的半徑,
∴以P為圓心,PA為半徑作圓,則該圓一定不會(huì)經(jīng)過(guò)扇形的弧AB的中點(diǎn)C.
故選B.
點(diǎn)評(píng):本題考查了弧長(zhǎng)的計(jì)算,扇形的周長(zhǎng)與面積,等腰三角形、線(xiàn)段垂直平分線(xiàn)的性質(zhì),三角形三邊關(guān)系定理,三點(diǎn)共圓的條件,綜合性較強(qiáng),難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•椒江區(qū)一模)計(jì)算(-ab-2-2的結(jié)果是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•椒江區(qū)一模)為迎接中考體育測(cè)試,小丁努力進(jìn)行實(shí)心球訓(xùn)練,成績(jī)不斷進(jìn)步,連續(xù)五次測(cè)試成績(jī)分別為6分,7分,8分,9分,10分,那么數(shù)據(jù)6,7,8,9,10的方差為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•椒江區(qū)一模)我們把三角形內(nèi)部的一個(gè)點(diǎn)到這個(gè)三角形三邊所在直線(xiàn)距離的最小值叫做這個(gè)點(diǎn)到這個(gè)三角形的距離.如圖1,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,如果PE≥PF≥PD,則稱(chēng)PD的長(zhǎng)度為點(diǎn)P到△ABC的距離.如圖2、圖3,在平面直角坐標(biāo)系中,已知A(6,0),B(0,8),連接AB.
(1)若P在圖2中的坐標(biāo)為(2,4),則P到OA的距離為
4
4
,P到OB的距離為
2
2
,P到AB的距離為
0.8
0.8
,所以P到△AOB的距離為
0.8
0.8
;
(2)若點(diǎn)Q是圖2中△AOB的內(nèi)切圓圓心,求點(diǎn)Q到△AOB距離的最大值;
(3)若點(diǎn)R是圖3中△AOB內(nèi)一點(diǎn),且點(diǎn)R到△AOB的距離為1,請(qǐng)畫(huà)出所有滿(mǎn)足條件的點(diǎn)R所形成的封閉圖形,并求出這個(gè)封閉圖形的周長(zhǎng).(畫(huà)圖工具不限)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•椒江區(qū)一模)已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)P(m,n)是拋物線(xiàn)y=
14
x2+1
上的一個(gè)動(dòng)點(diǎn).
(1)如圖1,過(guò)動(dòng)點(diǎn)P作PB⊥x軸,垂足為B,連接PA,請(qǐng)通過(guò)測(cè)量或計(jì)算,比較PA與PB的大小關(guān)系:PA
=
=
PB(直接填寫(xiě)“>”“<”或“=”,不需解題過(guò)程);
(2)請(qǐng)利用(1)的結(jié)論解決下列問(wèn)題:
①如圖2,設(shè)C的坐標(biāo)為(2,5),連接PC,AP+PC是否存在最小值?如果存在,求點(diǎn)P的坐標(biāo);如果不存在,簡(jiǎn)單說(shuō)明理由;
②如圖3,過(guò)動(dòng)點(diǎn)P和原點(diǎn)O作直線(xiàn)交拋物線(xiàn)于另一點(diǎn)D,若AP=2AD,求直線(xiàn)OP的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案