如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)試判斷線段BD與CD的大小關系;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論;
(3)若△ABC為直角三角形,且∠BAC=90°時,判斷四邊形AFBD的形狀,并說明理由.
(1)BD=CD;(2)矩形;(3)菱形
【解析】
試題分析:(1)根據(jù)平行線的性質(zhì)可得∠FAE=∠CDE,再結(jié)合∠AEF=∠DEC,AE=DE,即可證得△AEF≌△DEF,從而可以證得結(jié)論;
(2)由AF∥BC,AF=BD可證得四邊形AFBD是平行四邊形,再根據(jù)等腰三角形的性質(zhì)可得AD⊥BC,即可證得四邊形AFBD是矩形;
(3)先根據(jù)直角三角形斜邊的中線是斜邊的一半可證得BD=AD,再結(jié)合四邊形AFBD是平行四邊形可證得四邊形AFBD是菱形.
(1)∵AF∥BC,
∴∠FAE=∠CDE,
∵∠AEF=∠DEC,AE=DE,
∴△AEF≌△DEF,
∴AF=CD,
∵AF=BD,
∴BD=CD;
(2)∵AF∥BC,AF=BD,
∴四邊形AFBD是平行四邊形,
∵AB=AC,BD=CD,
∴AD⊥BC,
∴四邊形AFBD是矩形;
(3)∵∠BAC=90°,BD=CD,
∴BD=AD(直角三角形斜邊的中線是斜邊的一半).
∵四邊形AFBD是平行四邊形,
∴四邊形AFBD是菱形.
考點:平行線的性質(zhì),全等三角形的判定和性質(zhì),平行四邊形、矩形、菱形的判定和性質(zhì)
點評:特殊四邊形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com