【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB, DF.
(1)求證:DF是⊙O的切線;
(2)若DB平分∠ADC,AB=a, ∶DE=4∶1,寫出求DE長(zhǎng)的思路.
【答案】(1)證明見解析;(2)答案見解析
【解析】試題解析:(1)連接OD,由AC為圓O的直徑,得∠ADC為直角,從而ΔCDE為直角,再由點(diǎn)F為CE的中點(diǎn),得∠FDC=∠FCD,再由OD=OC得∠ODC=∠OCD,由∠FCD+∠OCD=90°得∠FDC+∠ODC=90°, 即DF是⊙O的切線;
(2)由DB平分∠ADC,AC為⊙O的直徑,證明△ABC是等腰直角三角形;由AB=a,求出AC的長(zhǎng)度為;由∠ACE=∠ADC=90°,∠CAE是公共角,證明△ACD∽△AEC,得到;設(shè)DE為x,由∶DE=4∶1,求出.
試題解析:(1)證明:連接OD.
∵ OD=CD,
∴ ∠ODC=∠OCD.
∵ AC為⊙O的直徑,
∴ ∠ADC=∠EDC=90°.
∵ 點(diǎn)F為CE的中點(diǎn),
∴ DF=CF.
∴ ∠FDC=∠FCD.
∴ ∠FDO=∠FCO.
又∵ AC⊥CE,
∴ ∠FDO=∠FCO=90°.
∴ DF是⊙O的切線.
(2)①由DB平分∠ADC,AC為⊙O的直徑,證明△ABC是等腰直角三角形;
②AB=a,求出AC的長(zhǎng)度為;
③由∠ACE=∠ADC=90°,∠CAE是公共角,證明△ACD∽△AEC,得到;
④設(shè)DE為x,由∶DE=4∶1,求出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴(yán)重,交警對(duì)人民路某雷達(dá)測(cè)速區(qū)檢測(cè)到的一組汽車的時(shí)速數(shù)據(jù)進(jìn)行整理(速度在30﹣40含起點(diǎn)值30,不含終點(diǎn)值40),得到其頻數(shù)及頻率如表:
數(shù)據(jù)段 | 頻數(shù) | 頻率 |
30﹣40 | 10 | 0.05 |
40﹣50 | 36 | c |
50﹣60 | a | 0.39 |
60﹣70 | b | d |
70﹣80 | 20 | 0.10 |
總計(jì) | 200 | 1 |
(1)表中a、b、c、d分別為:a=; b=; c=; d= .
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果某天該路段約有1500輛通過,汽車時(shí)速不低于60千米即為違章,通過該統(tǒng)計(jì)數(shù)據(jù)估計(jì)當(dāng)天違章車輛約有多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.
應(yīng)用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解一元二次方程x2+2x-5=0,此方程可變形為( )
A.(x-1)2=6B.(x+1)2=6C.(x+1)2=4D.(x-1)2=1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列六種說法正確的個(gè)數(shù)是( )
①無限小數(shù)都是無理數(shù);
②正數(shù)、負(fù)數(shù)統(tǒng)稱實(shí)數(shù);
③無理數(shù)的相反數(shù)還是無理數(shù);
④無理數(shù)與無理數(shù)的和一定還是無理數(shù);
⑤無理數(shù)與有理數(shù)的和一定是無理數(shù);
⑥無理數(shù)與有理數(shù)的積一定仍是無理數(shù).
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明家的住房平面圖呈長(zhǎng)方形,被分割成3個(gè)正方形和2個(gè)長(zhǎng)方形后仍是中心對(duì)稱圖形.若只知道原住房平面圖長(zhǎng)方形的周長(zhǎng),則分割后不用測(cè)量就能知道周長(zhǎng)的圖形的標(biāo)號(hào)為( )
A.①②
B.②③
C.①③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)平面內(nèi)一點(diǎn)到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R .對(duì)于一個(gè)點(diǎn)與等邊三角形,給出如下定義:滿足r≤d≤R的點(diǎn)叫做等邊三角形的中心關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系xOy中,等邊△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,2),B(﹣,﹣1),C(,﹣1).
(1)已知點(diǎn)D(2,2),E(,1),F(,﹣1).在D,E,F中,是等邊△ABC的中心關(guān)聯(lián)點(diǎn)的是 ;
(2)如圖1,過點(diǎn)A作直線交x軸正半軸于M,使∠AMO=30°.
①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點(diǎn)P(m,n),求m的取值范圍;
②將直線AM向下平移得到直線y=kx+b,當(dāng)b滿足什么條件時(shí),直線y=kx+b上總存在等邊△ABC的中心關(guān)聯(lián)點(diǎn);(直接寫出答案,不需過程)
(3)如圖2,點(diǎn)Q為直線y=﹣1上一動(dòng)點(diǎn),⊙Q的半徑為.當(dāng)Q從點(diǎn)(﹣4,﹣1)出發(fā),以每秒1個(gè)單位的速度向右移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.是否存在某一時(shí)刻t,使得⊙Q上所有點(diǎn)都是等邊△ABC的中心關(guān)聯(lián)點(diǎn)?如果存在,請(qǐng)直接寫出所有符合題意的t的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(1,1),N(2,0),△MNP和△M1N1P1的頂點(diǎn)都在格點(diǎn)上,△MNP與△M1N1P1是關(guān)于某一點(diǎn)中心對(duì)稱,則對(duì)稱中心的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠α=55.5°,∠β=55°5',那么∠α與∠β之同的大小關(guān)系是( )
A. ∠α>∠β B. ∠α<∠β C. ∠α=∠β D. 無法確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com