【題目】如圖,四邊形ABCD內(nèi)接于⊙O,對(duì)角線AC為⊙O的直徑,過點(diǎn)C作AC的垂線交AD的延長(zhǎng)線于點(diǎn)E,點(diǎn)F為CE的中點(diǎn),連接DB, DF.

(1)求證:DF是⊙O的切線;

(2)若DB平分∠ADC,AB=a, ∶DE=4∶1,寫出求DE長(zhǎng)的思路.

【答案】1)證明見解析;(2)答案見解析

【解析】試題解析:1)連接OD,由AC為圓O的直徑,得ADC為直角,從而ΔCDE為直角,再由點(diǎn)FCE的中點(diǎn),得FDC=FCD,再由OD=OCODC=OCD,由∠FCD+OCD=90°得FDC+ODC=90°, DF是⊙O的切線;

(2)DB平分∠ADC,AC為⊙O的直徑,證明ABC是等腰直角三角形;AB=a,求出AC的長(zhǎng)度為由∠ACE=ADC=90°,CAE是公共角,證明ACD∽△AEC,得到;設(shè)DEx,由DE=41,求出.

試題解析:(1)證明:連接OD.

OD=CD,

ODC=OCD.

AC為⊙O的直徑,

ADC=EDC=90°.

點(diǎn)FCE的中點(diǎn),

DF=CF.

FDC=FCD.

FDO=FCO.

又∵ ACCE,

FDO=FCO=90°.

DF是⊙O的切線.

2①由DB平分∠ADC,AC為⊙O的直徑,證明ABC是等腰直角三角形;

AB=a,求出AC的長(zhǎng)度為

③由∠ACE=ADC=90°,CAE是公共角,證明ACD∽△AEC,得到;

④設(shè)DEx,由DE=41,求出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴(yán)重,交警對(duì)人民路某雷達(dá)測(cè)速區(qū)檢測(cè)到的一組汽車的時(shí)速數(shù)據(jù)進(jìn)行整理(速度在30﹣40含起點(diǎn)值30,不含終點(diǎn)值40),得到其頻數(shù)及頻率如表:

數(shù)據(jù)段

頻數(shù)

頻率

30﹣40

10

0.05

40﹣50

36

c

50﹣60

a

0.39

60﹣70

b

d

70﹣80

20

0.10

總計(jì)

200

1


(1)表中a、b、c、d分別為:a=; b=; c=; d=
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)如果某天該路段約有1500輛通過,汽車時(shí)速不低于60千米即為違章,通過該統(tǒng)計(jì)數(shù)據(jù)估計(jì)當(dāng)天違章車輛約有多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.

探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.

應(yīng)用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解一元二次方程x2+2x-5=0,此方程可變形為(

A.x-12=6B.x+12=6C.x+12=4D.x-12=1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列六種說法正確的個(gè)數(shù)是( )
①無限小數(shù)都是無理數(shù);
②正數(shù)、負(fù)數(shù)統(tǒng)稱實(shí)數(shù);
③無理數(shù)的相反數(shù)還是無理數(shù);
④無理數(shù)與無理數(shù)的和一定還是無理數(shù);
⑤無理數(shù)與有理數(shù)的和一定是無理數(shù);
⑥無理數(shù)與有理數(shù)的積一定仍是無理數(shù).
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明家的住房平面圖呈長(zhǎng)方形,被分割成3個(gè)正方形和2個(gè)長(zhǎng)方形后仍是中心對(duì)稱圖形.若只知道原住房平面圖長(zhǎng)方形的周長(zhǎng),則分割后不用測(cè)量就能知道周長(zhǎng)的圖形的標(biāo)號(hào)為( )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)平面內(nèi)一點(diǎn)到等邊三角形中心的距離為d,等邊三角形的內(nèi)切圓半徑為r,外接圓半徑為R .對(duì)于一個(gè)點(diǎn)與等邊三角形,給出如下定義:滿足rdR的點(diǎn)叫做等邊三角形的中心關(guān)聯(lián)點(diǎn).在平面直角坐標(biāo)系xOy中,等邊△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,2),B(﹣,﹣1),C(,﹣1).

(1)已知點(diǎn)D(2,2),E,1),F,﹣1).在D,EF中,是等邊△ABC的中心關(guān)聯(lián)點(diǎn)的是

(2)如圖1,過點(diǎn)A作直線交x軸正半軸于M,使∠AMO=30°.

①若線段AM上存在等邊△ABC的中心關(guān)聯(lián)點(diǎn)Pmn),求m的取值范圍;

②將直線AM向下平移得到直線y=kx+b,當(dāng)b滿足什么條件時(shí),直線y=kx+b總存在等邊△ABC的中心關(guān)聯(lián)點(diǎn);(直接寫出答案,不需過程)

(3)如圖2,點(diǎn)Q為直線y=﹣1上一動(dòng)點(diǎn),⊙Q的半徑為.當(dāng)Q從點(diǎn)(﹣4,﹣1)出發(fā),以每秒1個(gè)單位的速度向右移動(dòng),運(yùn)動(dòng)時(shí)間為t秒.是否存在某一時(shí)刻t,使得⊙Q上所有點(diǎn)都是等邊△ABC的中心關(guān)聯(lián)點(diǎn)?如果存在,請(qǐng)直接寫出所有符合題意的t的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(1,1),N(2,0),△MNP和△M1N1P1的頂點(diǎn)都在格點(diǎn)上,△MNP與△M1N1P1是關(guān)于某一點(diǎn)中心對(duì)稱,則對(duì)稱中心的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果∠α=55.5°,∠β=55°5',那么∠α與∠β之同的大小關(guān)系是(

A. ∠α>∠β B. ∠α<∠β C. ∠α=∠β D. 無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案