某商場(chǎng)銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:

 


進(jìn)價(jià)(元/部)
4000
2500
售價(jià)(元/部)
4300
3000
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種手機(jī)若干部,共需15.5萬(wàn)元,預(yù)計(jì)全部銷售后可獲毛利潤(rùn)共2.1萬(wàn)元.
(毛利潤(rùn)=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)16萬(wàn)元,該商場(chǎng)怎樣進(jìn)貨,使全部銷售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn).

解:(1)設(shè)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲種手機(jī)x部,乙種手機(jī)y部,根據(jù)題意,得
 ,解得:
答:商場(chǎng)計(jì)劃購(gòu)進(jìn)甲種手機(jī)20部,乙種手機(jī)30部。
(2)設(shè)甲種手機(jī)減少a部,則乙種手機(jī)增加2a部,根據(jù)題意,得
,解得:a≤5。
設(shè)全部銷售后獲得的毛利潤(rùn)為W元,由題意,得
。
∵k=0.07>0,∴W隨a的增大而增大。
∴當(dāng)a=5時(shí),W最大=2.45。
答:當(dāng)該商場(chǎng)購(gòu)進(jìn)甲種手機(jī)15部,乙種手機(jī)40部時(shí),全部銷售后獲利最大.最大毛利潤(rùn)為2.45萬(wàn)元。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0)、(0,1),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過(guò)點(diǎn)D作直線交折線OAB于點(diǎn)E.

(1)記的面積為S,求S與b的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形,DE=,試探究四邊形與矩形OABC的重疊部分的面積是否發(fā)生變化,若不變,求出該重疊部分的面積;若改變,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知直線與x軸、y軸分別交于點(diǎn)A、B,線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面積;
(2)求點(diǎn)C坐標(biāo);
(3)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)P(x,0)
①請(qǐng)用x的代數(shù)式表示PB2、PC2;
②是否存在這樣的點(diǎn)P,使得|PC-PB|的值最大?如果不存在,請(qǐng)說(shuō)明理由;
如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

國(guó)家推行“節(jié)能減排,低碳經(jīng)濟(jì)”的政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費(fèi)為b元.據(jù)市場(chǎng)調(diào)查知:每輛車改裝前、后的燃料費(fèi)(含改裝費(fèi))、(單位:元)與正常運(yùn)營(yíng)時(shí)間(單位:天)之間分別滿足關(guān)系式:、,如圖所示.

試根據(jù)圖像解決下列問(wèn)題:
(1)每輛車改裝前每天的燃料費(fèi)=     元,每輛車的改裝費(fèi)b=    元.正常運(yùn)營(yíng)    天后,就可以從節(jié)省燃料費(fèi)中收回改裝成本.
(2)某出租汽車公司一次性改裝了100輛車,因而,正常運(yùn)營(yíng)多少天后共節(jié)省燃料費(fèi)40萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,一次函數(shù)與反比例函數(shù)的圖象相交于點(diǎn)A,且點(diǎn)A的縱坐標(biāo)為1.

(1)求反比例函數(shù)的解析式;
(2)根據(jù)圖象寫出當(dāng)x>0時(shí),一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,一次函數(shù)y=kx+1(k≠0)與反比例函數(shù)(m≠0)的圖象有公共點(diǎn)A(1,2).直線l⊥x軸于點(diǎn)N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點(diǎn)B,C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀材料:若a,b都是非負(fù)實(shí)數(shù),則.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
證明:∵,∴
.當(dāng)且僅當(dāng)a=b時(shí),“=”成立.
舉例應(yīng)用:已知x>0,求函數(shù)的最小值.
解:.當(dāng)且僅當(dāng),即x=1時(shí),“=”成立.
當(dāng)x=1時(shí),函數(shù)取得最小值,y最小=4.
問(wèn)題解決:汽車的經(jīng)濟(jì)時(shí)速是指汽車最省油的行駛速度.某種汽車在每小時(shí)70~110公里之間行駛時(shí)(含70公里和110公里),每公里耗油升.若該汽車以每小時(shí)x公里的速度勻速行駛,1小時(shí)的耗油量為y升.
(1)求y關(guān)于x的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(2)求該汽車的經(jīng)濟(jì)時(shí)速及經(jīng)濟(jì)時(shí)速的百公里耗油量(結(jié)果保留小數(shù)點(diǎn)后一位).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

義潔中學(xué)計(jì)劃從榮威公司購(gòu)買A、B兩種型號(hào)的小黑板,經(jīng)洽談,購(gòu)買一塊A型小黑板比買一塊B型小黑板多用20元.且購(gòu)買5塊A型小黑板和4塊B型小黑板共需820元.
(1)求購(gòu)買一塊A型小黑板、一塊B型小黑板各需要多少元?
(2)根據(jù)義潔中學(xué)實(shí)際情況,需從榮威公司購(gòu)買A、B兩種型號(hào)的小黑板共60塊,要求購(gòu)買A、B兩種型號(hào)小黑板的總費(fèi)用不超過(guò)5240元.并且購(gòu)買A型小黑板的數(shù)量應(yīng)大于購(gòu)買A、B種型號(hào)小黑板總數(shù)量的.請(qǐng)你通過(guò)計(jì)算,求出義潔中學(xué)從榮威公司購(gòu)買A、B兩種型號(hào)的小黑板有哪幾種方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

為了節(jié)約資源,科學(xué)指導(dǎo)居民改善居住條件,小王向房管部門提出了一個(gè)購(gòu)買商品房的政策性方案.

人均住房面積(平方米)
單價(jià)(萬(wàn)元/平方米)
不超過(guò)30(平方米)
0.3
超過(guò)30平方米不超過(guò)m(平方米)部分(45≤m≤60)
0.5
超過(guò)m平方米部分
0.7
根據(jù)這個(gè)購(gòu)房方案:
(1)若某三口之家欲購(gòu)買120平方米的商品房,求其應(yīng)繳納的房款;
(2)設(shè)該家庭購(gòu)買商品房的人均面積為x平方米,繳納房款y萬(wàn)元,請(qǐng)求出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該家庭購(gòu)買商品房的人均面積為50平方米,繳納房款為y萬(wàn)元,且57<y≤60 時(shí),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案