(2010•綿陽(yáng))如圖,拋物線(xiàn)y=ax2+bx+4與x軸的兩個(gè)交點(diǎn)分別為A(-4,0)、B(2,0),與y軸交于點(diǎn)C,頂點(diǎn)為D.E(1,2)為線(xiàn)段BC的中點(diǎn),BC的垂直平分線(xiàn)與x軸、y軸分別交于F、G.
(1)求拋物線(xiàn)的函數(shù)解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)在直線(xiàn)EF上求一點(diǎn)H,使△CDH的周長(zhǎng)最小,并求出最小周長(zhǎng);
(3)若點(diǎn)K在x軸上方的拋物線(xiàn)上運(yùn)動(dòng),當(dāng)K運(yùn)動(dòng)到什么位置時(shí),△EFK的面積最大?并求出最大面積.

【答案】分析:(1)將A、B的坐標(biāo)代入拋物線(xiàn)的解析式中,即可求出待定系數(shù)的值,進(jìn)而可用配方法求出其頂點(diǎn)D的坐標(biāo);
(2)根據(jù)拋物線(xiàn)的解析式可求出C點(diǎn)的坐標(biāo),由于CD是定長(zhǎng),若△CDH的周長(zhǎng)最小,那么CH+DH的值最小,由于EF垂直平分線(xiàn)段BC,那么B、C關(guān)于直線(xiàn)EF對(duì)稱(chēng),所以BD與EF的交點(diǎn)即為所求的H點(diǎn);易求得直線(xiàn)BC的解析式,關(guān)鍵是求出直線(xiàn)EF的解析式;由于E是BC的中點(diǎn),根據(jù)B、C的坐標(biāo)即可求出E點(diǎn)的坐標(biāo);可證△CEG∽△COB,根據(jù)相似三角形所得的比例線(xiàn)段即可求出CG、OG的長(zhǎng),由此可求出G點(diǎn)坐標(biāo),進(jìn)而可用待定系數(shù)法求出直線(xiàn)EF的解析式,由此得解;
(3)過(guò)K作x軸的垂線(xiàn),交直線(xiàn)EF于N;設(shè)出K點(diǎn)的橫坐標(biāo),根據(jù)拋物線(xiàn)和直線(xiàn)EF的解析式,即可表示出K、N的縱坐標(biāo),也就能得到KN的長(zhǎng),以KN為底,F(xiàn)、E橫坐標(biāo)差的絕對(duì)值為高,可求出△KEF的面積,由此可得到關(guān)于△KEF的面積與K點(diǎn)橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出其面積的最大值及對(duì)應(yīng)的K點(diǎn)坐標(biāo).
解答:解:(1)∵拋物線(xiàn)y=ax2+bx+4與x軸的兩個(gè)交點(diǎn)分別為A(-4,0)、B(2,0),
,
解得,b=-1.
所以?huà)佄锞(xiàn)的解析式為,頂點(diǎn)D的坐標(biāo)為(-1,).

(2)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)M,
因?yàn)镋F垂直平分BC,即C關(guān)于直線(xiàn)EG的對(duì)稱(chēng)點(diǎn)為B,
連接BD交于EF于一點(diǎn),則這一點(diǎn)為所求點(diǎn)H,使DH+CH最小,
即最小為:DH+CH=DH+HB=BD=;
;
∴△CDH的周長(zhǎng)最小值為CD+DH+CH=;
設(shè)直線(xiàn)BD的解析式為y=k1x+b1,則
解得:;
所以直線(xiàn)BD的解析式為y=x+3;
由于BC=2,CE=BC=,Rt△CEG∽R(shí)t△COB,
得CE:CO=CG:CB,
所以CG=2.5,GO=1.5,G(0,1.5);
同理可求得直線(xiàn)EF的解析式為y=x+;
聯(lián)立直線(xiàn)BD與EF的方程,解得使△CDH的周長(zhǎng)最小的點(diǎn)H(,);

(3)設(shè)K(t,),-4<t<2、過(guò)K作x軸的垂線(xiàn)交EF于N;
則KN=yK-yN=-(t+)=-;
所以S△EFK=S△KFN+S△KNE=KN(t+3)+KN(1-t)=2KN=-t2-3t+5=-(t+2+
即當(dāng)t=-時(shí),△EFK的面積最大,最大面積為,此時(shí)K(-,).
點(diǎn)評(píng):此題是二次函數(shù)的綜合類(lèi)試題,考查了二次函數(shù)解析式的確定、軸對(duì)稱(chēng)的性質(zhì)、相似三角形的判定和性質(zhì)、三角形面積的求法、二次函數(shù)的應(yīng)用等知識(shí),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2011年3月浙江省寧波市七中九年級(jí)月考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•綿陽(yáng))如圖,拋物線(xiàn)y=ax2+bx+4與x軸的兩個(gè)交點(diǎn)分別為A(-4,0)、B(2,0),與y軸交于點(diǎn)C,頂點(diǎn)為D.E(1,2)為線(xiàn)段BC的中點(diǎn),BC的垂直平分線(xiàn)與x軸、y軸分別交于F、G.
(1)求拋物線(xiàn)的函數(shù)解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)在直線(xiàn)EF上求一點(diǎn)H,使△CDH的周長(zhǎng)最小,并求出最小周長(zhǎng);
(3)若點(diǎn)K在x軸上方的拋物線(xiàn)上運(yùn)動(dòng),當(dāng)K運(yùn)動(dòng)到什么位置時(shí),△EFK的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2010•綿陽(yáng))如圖,已知正比例函數(shù)y=ax(a≠0)的圖象與反比例函致(k≠0)的圖象的一個(gè)交點(diǎn)為A(-1,2-k2),另一個(gè)交點(diǎn)為B,且A、B關(guān)于原點(diǎn)O對(duì)稱(chēng),D為OB的中點(diǎn),過(guò)點(diǎn)D的線(xiàn)段OB的垂直平分線(xiàn)與x軸、y軸分別交于C、E.
(1)寫(xiě)出反比例函數(shù)和正比例函數(shù)的解析式;
(2)試計(jì)算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2010•綿陽(yáng))如圖,已知正比例函數(shù)y=ax(a≠0)的圖象與反比例函致(k≠0)的圖象的一個(gè)交點(diǎn)為A(-1,2-k2),另一個(gè)交點(diǎn)為B,且A、B關(guān)于原點(diǎn)O對(duì)稱(chēng),D為OB的中點(diǎn),過(guò)點(diǎn)D的線(xiàn)段OB的垂直平分線(xiàn)與x軸、y軸分別交于C、E.
(1)寫(xiě)出反比例函數(shù)和正比例函數(shù)的解析式;
(2)試計(jì)算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省綿陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•綿陽(yáng))如圖,拋物線(xiàn)y=ax2+bx+4與x軸的兩個(gè)交點(diǎn)分別為A(-4,0)、B(2,0),與y軸交于點(diǎn)C,頂點(diǎn)為D.E(1,2)為線(xiàn)段BC的中點(diǎn),BC的垂直平分線(xiàn)與x軸、y軸分別交于F、G.
(1)求拋物線(xiàn)的函數(shù)解析式,并寫(xiě)出頂點(diǎn)D的坐標(biāo);
(2)在直線(xiàn)EF上求一點(diǎn)H,使△CDH的周長(zhǎng)最小,并求出最小周長(zhǎng);
(3)若點(diǎn)K在x軸上方的拋物線(xiàn)上運(yùn)動(dòng),當(dāng)K運(yùn)動(dòng)到什么位置時(shí),△EFK的面積最大?并求出最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案