正方形ABCD中,AB=1,分別以A、C為圓心作兩個半徑為R、r(R>r)的圓,當R、r滿足條件
 
時,⊙A與⊙C有2個交點.
分析:根據(jù)勾股定理可以求出AC的長,根據(jù)圓的半徑和圓心距的關系即可求解.
解答:解:根據(jù)勾股定理,求得兩圓的圓心距AC=
2
,若⊙A與⊙C有2個交點,則兩圓相交,圓心距大于兩圓半徑之差,而小于兩圓半徑之和,即R-r<
2
<R+r(形式不唯一).
點評:熟練根據(jù)勾股定理求得圓心距,再根據(jù)公共點的個數(shù)判斷兩圓的位置關系,進一步得到數(shù)量關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•臨沂)如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點O,點E,F(xiàn)分別從B,C兩點同時出發(fā),以1cm/s的速度沿BC,CD運動,到點C,D時停止運動,設運動時間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關系可用圖象表示為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在正方形ABCD中,M為AD中點,N為CD中點,試求tan∠MBN的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在邊長為1的正方形ABCD中,點M、N、O、P分別在邊AB、BC、CD、DA上.如果AM=BM,DP=3AP,則MN+NO+OP的最小值是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在正方形ABCD中,畫2個半徑為a的四分之一圓,用代數(shù)式表示陰影部分的面積為
2a2-
1
2
πa2
2a2-
1
2
πa2
(結果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在正方形ABCD中,AB=4,E在BC邊上,BE=1,F(xiàn)是AC上一動點,則EF+BF的最小值是
5
5

查看答案和解析>>

同步練習冊答案