13、如圖,⊙O1與⊙O2內(nèi)切于點(diǎn)A,D為⊙O2上一點(diǎn),過點(diǎn)D作⊙O2的切線交⊙O1于F、E,連接AF,AE,分別交⊙O2于B,C,連接BC,AD,BC與AD相交于點(diǎn)P,延長AD交⊙O1于Q.
(1)求證:BC∥EF;
(2)求證:FD•PC=AP•DQ.
分析:(1)如圖過兩圓的公切線MN,利用弦切角定理可以找到角的關(guān)系證明BC∥EF;
(2)利用平行線的性質(zhì)和同弧上的圓周角相等可以找到證明△APC∽△FDQ的條件,然后利用相似三角形的性質(zhì)就可以證明題目的結(jié)論.
解答:解:(1)如圖過兩圓的公切線MN,
∵∠NAC=∠ABC=∠AFD,
∴BC∥EF.

(2)連接FQ,
∵BC∥EF,
∴∠ACP=∠AED,
∵∠AED=∠AQF,∠AQF=∠ACP,
又∵∠EAP=∠DFQ,
∴△APC∽△FDQ.
∴FD•PC=AP•DQ.
點(diǎn)評:熟練掌握弦切角定理和相似三角形的性質(zhì)是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、已知:如圖,⊙O1與⊙O2外切于點(diǎn)P,直線AB過點(diǎn)P交⊙O1于A,交⊙O2于B,點(diǎn)C、D分別為⊙O1、⊙O2上的點(diǎn),且∠ACP=65°,則∠BDP=
65
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于M點(diǎn),AF是兩圓的外公切線,A、B是切點(diǎn),DF經(jīng)過O1、O2,分別交⊙O1于D、⊙O2于E,AC是⊙O1的直徑,BC經(jīng)過M點(diǎn),連接AD.
(1)求證:AD∥BC;
(2)求證:MF2=AF•BF;
(3)如果⊙O1的直徑長為8,tan∠ACB=
34
,求⊙O2的直徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O1與⊙O2相交于C、D兩點(diǎn),⊙O1的割線PAB與DC的延長線交于點(diǎn)P,PN與⊙O2相切于點(diǎn)N,若PB=10,AB=6,則PN=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點(diǎn),直線l與⊙O1、⊙O2分別切于B,C點(diǎn),若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖:⊙O1與⊙O2相交于AB兩點(diǎn),過點(diǎn)A、B的直線分別與⊙O1交于C、E,與⊙O2交于D、F,連接CE、DF.
求證:CE∥DF.

查看答案和解析>>

同步練習(xí)冊答案