【題目】一次函數(shù)片的圖象如圖所示,下列說法:

ab0; 

②函數(shù)yax+d不經(jīng)過第一象限;

③函數(shù)ycx+b中,yx的增大而增大;

3a+b3c+d

其中正確的個(gè)數(shù)有()

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

【答案】A

【解析】

仔細(xì)觀察圖象:①a的正負(fù)看函數(shù)y1=ax+b圖象從左向右成何趨勢(shì),b的正負(fù)看函數(shù)y1=ax+b圖象與y軸交點(diǎn)即可;

②觀察函數(shù)圖象可以直接得到答案;

③觀察函數(shù)圖象可以直接得到答案;

④根據(jù)兩直線交點(diǎn)可以得到答案.

由圖象可得:a0,b0c0,d0

ab0,故①正確;

函數(shù)y=ax+d的圖象經(jīng)過第二,三,四象限,即不經(jīng)過第一象限,故②正確,

函數(shù)y=cx+b中,yx的增大而增大,故③正確;

∵一次函數(shù)y1=ax+by2=cx+d的圖象的交點(diǎn)的橫坐標(biāo)為3,

3a+b=3c+d,故④正確.

綜上所述,正確的結(jié)論有4個(gè).

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB⊙O的直徑,PA⊙O相切于點(diǎn)A,BP⊙O相交于點(diǎn)D,C⊙O上的一點(diǎn),分別連接CB、CD,∠BCD60°.

(1)求∠ABD的度數(shù);

(2)AB6,求PD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展傳統(tǒng)文化知識(shí)競(jìng)賽,已知該校七年級(jí)男生和女生各有學(xué)生200人,從中各隨機(jī)抽取20名學(xué)生進(jìn)行抽樣調(diào)查,獲得了他們知識(shí)競(jìng)賽成績(jī)(滿分100分),并進(jìn)行整理,得到下面部分信息.

男生:74 97 96 89 98 74 65 76 72 78 99 72 97 76 99 74 99 73 98 74

女生:76 87 93 65 78 94 89 68 95 54 89 87 89 89 77 94 86 87 92 91

成績(jī)

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

男生

0

1

10

1

8

女生

1

2

a

8

6

平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:

成績(jī)

平均數(shù)

中位數(shù)

眾數(shù)

方差

男生

84

77

74

145.4

女生

84

b

89

115.6

根據(jù)以上信息,回答下列問題:

1a   ,b   

2)你認(rèn)為七年級(jí)學(xué)生中,男生還是女生的總體成績(jī)較好,為什么?(至少?gòu)膬蓚(gè)不同的角度說明)

3)若在此次競(jìng)賽中,該校七年級(jí)學(xué)生中有四人取得100分的好成績(jī),且恰好是兩個(gè)男生兩個(gè)女生.現(xiàn)從這四人中隨機(jī)抽取兩人參加市里的競(jìng)賽,求這兩人恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了弘揚(yáng)傳統(tǒng)文化,某校組織八年級(jí)全體學(xué)生參加恰同學(xué)少年,品詩(shī)詞美韻的古詩(shī)詞比賽.比賽結(jié)束后,學(xué)校隨機(jī)抽取的部分學(xué)生成績(jī)作為樣本,并進(jìn)行整理后分成下面5組,的小組稱為詩(shī)詞少年組,的小組稱為詩(shī)詞居士組,的小組稱為詩(shī)詞圣手組,的小組稱為詩(shī)詞達(dá)人組,的小組稱為詩(shī)詞泰斗組;下面是將整理的樣本繪制的不完整的頻數(shù)分布直方圖,請(qǐng)結(jié)合提供的信息解答下列問題:

(1)詩(shī)詞泰斗組成績(jī)的頻率12.5%,求出樣本容量,補(bǔ)全頻數(shù)分布直方圖;

(2)以各組組中值代表本組的選手的平均成績(jī),計(jì)算樣本中不含詩(shī)詞圣手組的其他四組學(xué)生的平均成績(jī);

(3)學(xué)校決定對(duì)成績(jī)進(jìn)人詩(shī)詞圣手、詩(shī)詞達(dá)人詩(shī)詞泰斗組的學(xué)生進(jìn)行獎(jiǎng)勵(lì),若八年級(jí)共有240名學(xué)生,請(qǐng)通過計(jì)算推斷,大約有多少名學(xué)生獲獎(jiǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】垃圾分類問題受到全社會(huì)的廣泛關(guān)注,我區(qū)某校學(xué)生會(huì)向全校2100名學(xué)生發(fā)起了“垃圾要回家,請(qǐng)你幫助它”的捐款活動(dòng),用于購(gòu)買垃圾分類桶.為了解捐款情況,學(xué)生會(huì)隨機(jī)調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如圖統(tǒng)計(jì)圖1和圖2,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為  ,圖1m的值是  ;

2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

3)根據(jù)樣本數(shù)據(jù),估計(jì)該校本次活動(dòng)捐款金額為5元的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知頂點(diǎn)為D的拋物線x軸交于A(1,0),C(3,0)兩點(diǎn),與y軸交于B點(diǎn).

(1)求該拋物線的解析式及點(diǎn)D坐標(biāo);

(2)若點(diǎn)Q是該拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)AQQB最小時(shí),直接寫出直線AQ的函數(shù)解析式;

(3)若點(diǎn)P為拋物上的一個(gè)動(dòng)點(diǎn),且點(diǎn)Px軸上方,過PPK垂直x軸于點(diǎn)K,是否存在點(diǎn)P使得A,K,P三點(diǎn)形成的三角形與DBC相似?如存在,求出點(diǎn)P的坐標(biāo),如不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在正方形ABCD中,EAB上一點(diǎn),FAD延長(zhǎng)線上一點(diǎn),且DFBE.求證:CECF;

2)如圖2,在正方形ABCD中,EAB上一點(diǎn),GAD上一點(diǎn),如果∠GCE45°,請(qǐng)你利用(1)的結(jié)論證明:GEBEGD

3)運(yùn)用(1)(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:

如圖3,在直角梯形ABCD中,AD∥BCBCAD),∠B90°ABBC,EAB上一點(diǎn),且∠DCE45°,BE4DE="10," 求直角梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求mk,n的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+2分別與x軸,y軸交于點(diǎn)AB,點(diǎn)C是反比例函數(shù)y的圖象在第一象限內(nèi)一動(dòng)點(diǎn).過點(diǎn)C作直線CDAB.交x軸于點(diǎn)D,交AB于點(diǎn)E.則CEDE的最小值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案