【題目】⑴如圖1,點C在線段AB上,點D、E在直線AB同側(cè),∠A=∠DCE=∠CBEDCCE.求證:ACBE.

⑵如圖2,點C在線段AB上,點D、E在直線AB同側(cè),∠A=∠DCE=∠CBE90°.

①求證:;②連接BD,若∠ADC=∠ABD,AC3,BC,求tanCDB的值;

⑶如圖3,在△ABD中,點CAB邊上,且∠ADC=∠ABD,點EBD邊上,連接CE,∠BCE+∠BAD180°,AC3,BCCE,直接寫出的值.

【答案】1)見解析;(2)①見解析;② ;(3 .

【解析】

1)利用AAS證明可得AC=BE;

2)①先證明DAC∽△CBE,再利用相似三角形的性質(zhì)可得;

②根據(jù)∠A=DCE=CBE=90°,∠ADC=ABD,可推出ADC∽△ADB,從而求出相應(yīng)的線段長度,得到tanCDB的值.

3)根據(jù)∠ADC=ABD,可推出ADC∽△ADB,從而得到AD的長,根據(jù)∠BCE+BAD=180°,以E為圓心,EC長為半徑畫弧,交BC于點H,連接EH,可得EH=EC,∠EHC=ECB=ADC+DCA,可得BEH∽△ADC,則.

1)證明:如圖1

,

,

2)①證明:∵∠DCA+DCE+ECB=180°,
DCA+A+CDA=180°,∠A=DCE,
∴∠ADC=ECB,
∵∠A=B,
∴△DAC∽△CBE

②如圖2,

∵∠ADC=DBA,∠A=A
∴△ADC∽△ABD,

AB=AC+BC=

解得AD=5

設(shè)∠DBA=CDA=α,
∴∠CDG=90-2α
∴∠CGD=2α,
∴∠GCB=GBC=α,
CG=GB,
設(shè)CG=GB=x,

解得

3)如圖3,

∵∠ADC=B,∠A=A,
∴△ADC∽△ADB,

解得AD=5,
∵∠BCE+BAD=180°,∠ADC+DCA+BAD=180°,
∴∠ADC+DCA=BCE
E為圓心,EC長為半徑畫弧,交BC于點H,連接EH,
EH=EC,∠EHC=ECB=ADC+DCA
∵∠B=ADC
∴∠BEH=ACD,
∴△BEH∽△ADC,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(AB的左側(cè)),與y軸交于點N,過A點的直線ly軸交于點C,與拋物線的另一個交點為D,已知,P點為拋物線上一動點(不與AD重合).

1)求拋物線和直線l的解析式;

2)當(dāng)點P在直線l上方的拋物線上時,過P點作PEx軸交直線l于點E,作軸交直線l于點F,求的最大值;

3)設(shè)M為直線l上的點,探究是否存在點M,使得以點N、CM、P為頂點的四邊形為平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC 為等腰直角三角形,∠ACB90°,點 M AB 邊的中點,點 N 為射線 AC 上一點,連接 BN,過點 C CDBN 于點 D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點 E,若 AB20MD14,則 NE 的長為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點A8,0)、B6,0).將線段OB繞著原點O逆時針方向旋轉(zhuǎn)角度αOC,連接AC.將AC繞著點A順時針方向旋轉(zhuǎn)角度βAD,連接OD

1)當(dāng)α30°,β60°時,求OD的長

2)當(dāng)α60°,β120°時,求OD的長

3)已知E10,0),當(dāng)β90°時,改變的大小,求ED的最大值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進(jìn)行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請補(bǔ)全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著中央電視臺《朗讀者》節(jié)目的播出,“朗讀”為越來越多的同學(xué)所喜愛,西寧市某中學(xué)計劃在全校開展“朗讀”活動,為了了解同學(xué)們對這項活動的參與態(tài)度,隨機(jī)對部分學(xué)生進(jìn)行了一次調(diào)查,調(diào)查結(jié)果整理后,將這部分同學(xué)的態(tài)度劃分為四個類別:.積極參與,.一定參與,.可以參與,.不參與.根據(jù)調(diào)查結(jié)果制作了如下不完整的統(tǒng)計表和統(tǒng)計圖.

學(xué)生參與“朗讀”的態(tài)度統(tǒng)計表

類別

人數(shù)

所占百分比

18

20

4

合計

請你根據(jù)以上信息,解答下列問題:

1______,______,并將條形統(tǒng)計圖補(bǔ)充完整;

2)該校有1500名學(xué)生,如果“不參與”的人數(shù)不超過150人時,“朗讀”活動可以順利開展,通過計算分析這次活動能否順利開展?

3)“朗讀”活動中,九年級一班比較優(yōu)秀的四名同學(xué)恰好是兩男兩女,從中隨機(jī)選取兩人在班級進(jìn)行朗讀示范,試用畫樹狀圖法或列表法求所選兩人都是女生的概率,并列出所有等可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角坐標(biāo)系中,矩形的邊軸上,點在原點,.若矩形以每秒2個單位長度沿軸正方向作勻速運(yùn)動.同時點從點出發(fā)以每秒1個單位長度沿的路線作勻速運(yùn)動,當(dāng)點運(yùn)動到點時停止運(yùn)動,矩形也隨之停止運(yùn)動.設(shè)點運(yùn)動時間為(秒).

1)當(dāng)時,求出點的坐標(biāo);

2)若的面積為,試求出之間的函數(shù)關(guān)系式(并寫出相應(yīng)的自變量的取值范圍).

3)畫出題(2)所列的函數(shù)的大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在⊙O中,AB、CD是直徑,弦AECD

1)如圖1,求證:;

2)如圖2,直線EC與直線AB交于點F,點GOD上,若FOFG,求證:△CFG是等腰三角形;

3)如圖3,在(2)的條件下,連接BD,若AE+CDBD,DG4,求線段FC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在矩形 ABCD 中,AB8AD10,E CD 邊上一點,連接 AE,將矩形 ABCD 沿 AE 折疊,頂點 D 恰好落在 BC 邊上點 F 處,延長 AE BC 的延長線于點G

1)求線段 CE 的長;

2)如圖 2M,N 分別是線段 AGDG 上的動點(與端點不重合),且∠DMN=∠DAM 設(shè) DNx

①求證四邊形 AFGD 為菱形;

②是否存在這樣的點 N,使DMN 是直角三角形?若存在,請求出 x 的值;若不存在, 請說明理由.

查看答案和解析>>

同步練習(xí)冊答案