如圖,將一條長(zhǎng)為60cm的卷尺鋪平后折疊,使得卷尺自身的一部分重合,然后在重合部分(陰影處)沿與卷尺邊垂直的方向剪一刀,此時(shí)卷尺分為了三段,若這三段長(zhǎng)度由短到長(zhǎng)的比為1:2:3,則折痕對(duì)應(yīng)的刻度有
 
種可能.
精英家教網(wǎng)
分析:可設(shè)折痕對(duì)應(yīng)的刻度為xcm,根據(jù)折疊的性質(zhì)和三段長(zhǎng)度由短到長(zhǎng)的比為1:2:3,長(zhǎng)為60cm的卷尺,列出方程求解即可.
解答:解:設(shè)折痕對(duì)應(yīng)的刻度為xcm,依題意有
①x+x+x=60,
解得x=20;
②x+x+0.4x=60,
解得x=25;
③x+x-
2
7
x=60,
解得x=35;
④x+x-
2
3
x=60,
解得x=45.
綜上所述,折痕對(duì)應(yīng)的刻度有4種可能.
故答案為:4.
點(diǎn)評(píng):考查了一元一次方程的應(yīng)用和圖形的剪拼,解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系列出方程,再求解.注意分類思想的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖,一個(gè)圓形街心花園,有三個(gè)出口A、B、C,每?jī)蓚(gè)出口之間有一條長(zhǎng)60米的道路,組成正三角形ABC,在中心O處有一個(gè)亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個(gè)全等的多邊形,以備種植不同的花草,
(1)請(qǐng)你按以上要求設(shè)計(jì)兩種不同的方案.將你的設(shè)計(jì)方案分別畫在圖(a)、圖(b)上,并附簡(jiǎn)單的說(shuō)明;
(2)要使三條小道把三角形分成三個(gè)全等的等腰梯形,應(yīng)怎樣設(shè)計(jì)?把方案畫在圖(c)上,并簡(jiǎn)單說(shuō)明畫法(不需證明);
(3)請(qǐng)你探究出一種一般方法,使得D不論在什么位置,都能準(zhǔn)確找到另外兩個(gè)出口E、F的位置,請(qǐng)寫明這個(gè)畫法.用圖(d)表示出來(lái).
(4)你在上圖中探索出的一般方法是否適用于正方形?請(qǐng)結(jié)合圖(e)予以說(shuō)明;這種方法可以推廣到正n邊形嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,小明將一張長(zhǎng)為4、寬為3的矩形紙片沿對(duì)角線剪開(kāi),得到兩張三角形紙片(如圖2),將這兩張三角紙片擺成如圖3的形狀,但點(diǎn)B、C、F、D在同一條直線上,且點(diǎn)C與點(diǎn)F重合(在圖3至圖6中統(tǒng)一用點(diǎn)F表示)
小明在對(duì)這兩張三角形紙片進(jìn)行如下操作時(shí)遇到了三個(gè)問(wèn)題,請(qǐng)你幫助解決.
(1)將圖3中的△ABF沿BD向右平移到圖4中△A1FG的位置,其中點(diǎn)B與點(diǎn)F 重合,請(qǐng)你求出平移的距離
3
3
;
(2)在圖5中若∠GFD=60°,則圖3中的△ABF繞點(diǎn)
F
F
順時(shí)針
順時(shí)針
方向旋轉(zhuǎn)
30°
30°
到圖5的位置
(3)將圖3中的△ABF沿直線AF翻折到圖6的位置,AB1交DE于點(diǎn)H,試問(wèn):△AEH和△HB1D的面積大小關(guān)系.說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇南京市玄武區(qū)九年級(jí)第一學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下列材料:

小華遇到這樣一個(gè)問(wèn)題,如圖1,△ABC中,∠ACB=30º,BC=6,AC=5,在△ABC內(nèi)部有一點(diǎn)P,連接PA.PB.PC,求PA+PB+PC的最小值.

小華是這樣思考的:要解決這個(gè)問(wèn)題,首先應(yīng)想辦法將這三條端點(diǎn)重合于一點(diǎn)的線段分離,然后再將它們連接成一條折線,并讓折線的兩個(gè)端點(diǎn)為定點(diǎn),這樣依據(jù)“兩點(diǎn)之間,線段最短”,就可以求出這三條線段和的最小值了.他先后嘗試了翻折.旋轉(zhuǎn).平移的方法,發(fā)現(xiàn)通過(guò)旋轉(zhuǎn)可以解決這個(gè)問(wèn)題.他的做法是,如圖2,將△APC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60º,得到△EDC,連接PD.BE,則BE的長(zhǎng)即為所求.

(1)請(qǐng)你寫出圖2中,PA+PB+PC的最小值為       ;

(2)參考小華的思考問(wèn)題的方法,解決下列問(wèn)題:

①如圖3,菱形ABCD中,∠ABC=60º,在菱形ABCD內(nèi)部有一點(diǎn)P,請(qǐng)?jiān)趫D3中畫出并指明長(zhǎng)度等于PA+PB+PC最小值的線段(保留畫圖痕跡,畫出一條即可);

②若①中菱形ABCD的邊長(zhǎng)為4,請(qǐng)直接寫出當(dāng)PA+PB+PC值最小時(shí)PB的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,一個(gè)圓形街心花園,有三個(gè)出口A、B、C,每?jī)蓚(gè)出口之間有一條長(zhǎng)60米的道路,組成正三角形ABC,在中心O處有一個(gè)亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個(gè)全等的多邊形,以備種植不同的花草,
(1)請(qǐng)你按以上要求設(shè)計(jì)兩種不同的方案.將你的設(shè)計(jì)方案分別畫在圖(a)、圖(b)上,并附簡(jiǎn)單的說(shuō)明;
(2)要使三條小道把三角形分成三個(gè)全等的等腰梯形,應(yīng)怎樣設(shè)計(jì)?把方案畫在圖(c)上,并簡(jiǎn)單說(shuō)明畫法(不需證明);
(3)請(qǐng)你探究出一種一般方法,使得D不論在什么位置,都能準(zhǔn)確找到另外兩個(gè)出口E、F的位置,請(qǐng)寫明這個(gè)畫法.用圖(d)表示出來(lái).
(4)你在上圖中探索出的一般方法是否適用于正方形?請(qǐng)結(jié)合圖(e)予以說(shuō)明;這種方法可以推廣到正n邊形嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年廣東省佛山市南海區(qū)九江鎮(zhèn)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,一個(gè)圓形街心花園,有三個(gè)出口A、B、C,每?jī)蓚(gè)出口之間有一條長(zhǎng)60米的道路,組成正三角形ABC,在中心O處有一個(gè)亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個(gè)全等的多邊形,以備種植不同的花草,
(1)請(qǐng)你按以上要求設(shè)計(jì)兩種不同的方案.將你的設(shè)計(jì)方案分別畫在圖(a)、圖(b)上,并附簡(jiǎn)單的說(shuō)明;
(2)要使三條小道把三角形分成三個(gè)全等的等腰梯形,應(yīng)怎樣設(shè)計(jì)?把方案畫在圖(c)上,并簡(jiǎn)單說(shuō)明畫法(不需證明);
(3)請(qǐng)你探究出一種一般方法,使得D不論在什么位置,都能準(zhǔn)確找到另外兩個(gè)出口E、F的位置,請(qǐng)寫明這個(gè)畫法.用圖(d)表示出來(lái).
(4)你在上圖中探索出的一般方法是否適用于正方形?請(qǐng)結(jié)合圖(e)予以說(shuō)明;這種方法可以推廣到正n邊形嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案