(2006•巴中)如圖,AB是半圓O的直徑,CB是半圓O的切線,B是切點(diǎn),AC交半圓O于點(diǎn)D.已知CD=1,AD=3,那么cos∠CAB=   
【答案】分析:根據(jù)切割線定理可知CB2=CD•CA=4,先求得CD=2;結(jié)合Rt△CAB中的條件可求得AB=2,即可求得cos∠CAB==
解答:解:∵CB2=CD•CA=4,
∴CB=2.
在Rt△CAB中,CB=2,CA=4,
∴AB=2
∴cos∠CAB==
點(diǎn)評(píng):本題考查切割線定理和銳角三角函數(shù)的定義:在直角三角形中,正弦等于對(duì)邊比斜邊;余弦等于鄰邊比斜邊;正切等于對(duì)邊比鄰邊.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標(biāo)系中,以點(diǎn)0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點(diǎn),過(guò)點(diǎn)B作⊙O′的切線,交y軸于點(diǎn)C,過(guò)點(diǎn)0′作x軸的垂線MN,垂足為D,一條拋物線(對(duì)稱(chēng)軸與y軸平行)經(jīng)過(guò)A、B兩點(diǎn),且頂點(diǎn)在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點(diǎn)P,在拋物線上是否存在一點(diǎn)Q,使四邊形DBPQ為平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標(biāo)系中,以點(diǎn)0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點(diǎn),過(guò)點(diǎn)B作⊙O′的切線,交y軸于點(diǎn)C,過(guò)點(diǎn)0′作x軸的垂線MN,垂足為D,一條拋物線(對(duì)稱(chēng)軸與y軸平行)經(jīng)過(guò)A、B兩點(diǎn),且頂點(diǎn)在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點(diǎn)P,在拋物線上是否存在一點(diǎn)Q,使四邊形DBPQ為平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年四川省巴中市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標(biāo)系中,以點(diǎn)0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點(diǎn),過(guò)點(diǎn)B作⊙O′的切線,交y軸于點(diǎn)C,過(guò)點(diǎn)0′作x軸的垂線MN,垂足為D,一條拋物線(對(duì)稱(chēng)軸與y軸平行)經(jīng)過(guò)A、B兩點(diǎn),且頂點(diǎn)在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點(diǎn)P,在拋物線上是否存在一點(diǎn)Q,使四邊形DBPQ為平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標(biāo)系中,以點(diǎn)0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點(diǎn),過(guò)點(diǎn)B作⊙O′的切線,交y軸于點(diǎn)C,過(guò)點(diǎn)0′作x軸的垂線MN,垂足為D,一條拋物線(對(duì)稱(chēng)軸與y軸平行)經(jīng)過(guò)A、B兩點(diǎn),且頂點(diǎn)在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點(diǎn)P,在拋物線上是否存在一點(diǎn)Q,使四邊形DBPQ為平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年全國(guó)中考數(shù)學(xué)試題匯編《四邊形》(09)(解析版) 題型:解答題

(2006•巴中)如圖,梯形ABCD中,AB∥DC,∠B=90°,E為BC上一點(diǎn),且AE⊥ED.若BC=12,DC=7,BE:EC=1:2,求AB的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案