【題目】“品中華詩詞,尋文化自信”.某校組織全校1000名學(xué)生舉辦了第二屆“中華詩詞大賽”的初賽,從中抽取部分學(xué)生的成績統(tǒng)計(jì)后,繪制了如下不完整的頻數(shù)分布統(tǒng)計(jì)表與頻數(shù)分布直方圖.

頻數(shù)分布統(tǒng)計(jì)表

組別

成績(分)

人數(shù)

百分比

8

20%

16

30%

4

10%

頻數(shù)分布直方圖

請(qǐng)觀察圖表,解答下列問題:

1)表中__________,__________;

2)補(bǔ)全頻數(shù)分布直方圖;

3)如果成績達(dá)到9090分以上者為優(yōu)秀,可推薦參加決賽,那么請(qǐng)你估計(jì)該校進(jìn)入決賽的學(xué)生大約有多少人?

【答案】112,40;(2)詳見解析;(3100

【解析】

1)先由A組人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)乘以C的百分比可得a的值,用B組人數(shù)除以總?cè)藬?shù)可得m的值;
2)根據(jù)(1)中所求結(jié)果可補(bǔ)全圖形;

3)根據(jù)樣本中90分及90分以上的百分比,乘以1000即可得到結(jié)果.

1)∵被調(diào)查的總?cè)藬?shù)為8÷20%=40人,
,

,即,
故答案為:1240;
2)補(bǔ)全圖形如下:

3)根據(jù)題意得:

(人).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,第(1)個(gè)圖形中面積為1的正方形有2個(gè),第(2)個(gè)圖形中面積為1的正方形有5個(gè),第(3)個(gè)圖形中面積為1的正方形有9個(gè),……按此規(guī)律,則第50個(gè)圖形中面積為1的正方形的個(gè)數(shù)為( 。

A. 1322 B. 1323 C. 1324 D. 1325

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是直線AB、CD外一點(diǎn),直線ABED相交于點(diǎn)F

1)如果ABCD,那么∠D=B+E嗎?

2)如果∠D=B+E,那么ABCD平行嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了編撰祖國的優(yōu)秀傳統(tǒng)文化,某校組織了一次“詩詞大會(huì)”,小明和小麗同時(shí)參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個(gè)字組成一句唐詩,其答案為“山重水復(fù)疑無路”.

(1)小明回答該問題時(shí),對(duì)第二個(gè)字是選“重”還是選“窮”難以抉擇,若隨機(jī)選擇其中一個(gè),則小明回答正確的概率是 ;

(2)小麗回答該問題時(shí),對(duì)第二個(gè)字是選“重”還是選“窮”、第四個(gè)字是選“富”還是選“復(fù)”都難以抉擇,若分別隨機(jī)選擇,請(qǐng)用列表或畫樹狀圖的方法求小麗回答正確的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,被直線所截,點(diǎn)是線段上的點(diǎn),過點(diǎn),連接,

1)試說明

2)將線段沿著直線平移得到線段,如圖2,連接.若,當(dāng)時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,兩角的角平分線交于點(diǎn),是射線上一個(gè)動(dòng)點(diǎn),過點(diǎn)的直線分別交射線,于點(diǎn),,

1)如圖1,若,,,求的度數(shù);

2)如圖2,若,請(qǐng)?zhí)剿?/span>的數(shù)量關(guān)系,并證明你的結(jié)論;

3)在點(diǎn)運(yùn)動(dòng)的過程中,請(qǐng)直接寫出這三個(gè)角之間滿足的數(shù)量關(guān)系:_________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,在△ABC,BAC=90,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D.E證明:DE=BD+CE.

(2)如圖②,(1)中的條件改為:在△ABC中,AB=AC,D. A.E三點(diǎn)都在直線m上,并且有∠BDA=AEC=BAC,請(qǐng)問結(jié)論DE=BD+CE是否成立,若成立,請(qǐng)你給證明:若不存在,請(qǐng)說明理由。

(3)應(yīng)用:如圖③,在△ABC中,∠BAC是鈍角,AB=AC,∠BAD>CAE,D. A.E三點(diǎn)都在直線m上,且∠BDA=AEC=BAC,只出現(xiàn)mBC的延長線交于點(diǎn)F,若BD=5DE=7EF=2CE,求△ABD與△ABF的面積之比。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A20°,∠ABC與∠ACB的角平分線交于D1,∠ABD1與∠ACD1的角平分線交于點(diǎn)D2,依此類推,∠ABD4與∠ACD4的角平分線交于點(diǎn)D5,則∠BD5C的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個(gè)小正方形的邊長為1個(gè)單位,每個(gè)小方格的頂點(diǎn)叫格點(diǎn).

(1)畫出ABCAB邊上的中線CD;

(2)畫出ABC向右平移4個(gè)單位后得到的A1B1C1;

(3)圖中ACA1C1的關(guān)系是: ;

(4)能使S ABQ=S ABC的格點(diǎn)Q,共有 個(gè),在圖中分別用Q 1,Q 2,…表示出來.

查看答案和解析>>

同步練習(xí)冊(cè)答案