如圖,在半徑為1的⊙O中,AB為直徑,C為弧AB的中點,D為弧CB的三等分點,且弧DB的長等于弧CD長的兩倍,連接AD并延長交⊙O的切線CE于點E(C為切點),則AE的長為______.
連接OC,過A作AM⊥EC于M,
∵CE是圓O的切線,
∴OC⊥CE,
∵AM⊥EC,
∴AMOC,
∵C為弧AB的中點,
∴∠A=∠B=45°,AC=BC,
∵OA=OB,
∴CO⊥AB,
∴MA⊥AB,
∴四邊形AMCO是矩形,
∴AM=OC=1,
∵D為弧CB的三等分點,
∴∠CAD=
1
3
×45°=15°,
∵MA⊥AB,OA為半徑,
∴AM為圓O的切線,
∴∠MAC=∠B=45°,
∴∠MAD=15°+45°=60°,
∴∠AEM=180°-60°-90°=30°,
∴AE=2AM=2.
故答案為:2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,PA與⊙O相切于點A,PC經(jīng)過⊙O的圓心且與該圓相交于兩點B、C,若PA=4,PB=2,則sinP=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點D在AB的延長線上,點C在⊙O上,CA=CD,∠CDA=30°.
(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑為5,求點A到CD所在直線的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,點C在⊙O上,CE⊥AB于E,CD平分∠ECB,交過點B的射線于D,交AB于F,且BC=BD.
(1)求證:BD是⊙O的切線;
(2)若AE=9,CE=12,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PB為⊙O的切線,B為切點,直線PO交⊙于點E、F,過點B作PO的垂線BA,垂足為點D,交⊙O于點A,延長AO與⊙O交于點C,連接BC,AF.
(1)求證:直線PA為⊙O的切線;
(2)試探究線段EF、OD、OP之間的等量關(guān)系,并加以證明;
(3)若BC=6,tan∠F=
1
2
,求cos∠ACB的值和線段PE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知l是⊙O的切線,⊙O的直徑AB=10cm,那么點A、B到直線l的距離之和為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知BC是⊙O的直徑,P是⊙O上一點,A是
BP
的中點,AD⊥BC于點D,BP與AD相交于點E.
(1)當(dāng)BC=6且∠ABC=60°時,求
AB
的長;
(2)求證:AE=BE.
(3)過A點作AMBP,求證:AM是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,巳知AB是⊙O的一條直徑,延長AB至C點,使得AC=3BC,CD與⊙O相切,切點為D.若CD=
3
,則線段BC的長度等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是⊙O上一點,∠CAB=30°,在AB的延長線上取一點P,使得PB=
1
2
AB,試判斷直線PC與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案