【題目】如圖,△ABC與△CDE為等腰直角三角形,∠BAC=∠DEC=90°,連接AD,取AD中點(diǎn)P,連接BP,并延長到點(diǎn)M,使BP=PM,連接AM、EM、AE,將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn).
(1)如圖①,當(dāng)點(diǎn)D在BC上,E在AC上時(shí),AE與AM的數(shù)量關(guān)系是______,∠MAE=______;
(2)將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到如圖②所示的位置,(1)中的結(jié)論是否仍然成立,若成立,請(qǐng)給出證明,若不成立,請(qǐng)說明理由;
(3)若CD=BC,將△CDE由圖①位置繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<360°),當(dāng)ME=CD時(shí),請(qǐng)直接寫出α的值.
【答案】(1)AM=AE , 45°;(2)成立,見解析;(3)α的值為60°或300°.
【解析】
(1)證明四邊形ABDM是平行四邊形即可解決問題.
(2)如圖2中,連接BD,DM,BD交AC于點(diǎn)O,交AE于G.證明△BCD∽△ACE,推出∠CBD=∠CAE,=,即可解決問題.
(3)如圖2中,首先證明△AEM是等腰直角三角形,分兩種情形畫出圖形分別求解即可.
解:(1)結(jié)論:AM=AE,∠MAE=45°.
理由:如圖1中,
∵AP=PD,BP=PM,
∴四邊形ABDM是平行四邊形,
∴AM∥BC,
∴∠MAE=∠C,
∵AB=AC,∠BAC=90°,
∴∠C=45°,
∴∠MAE=45°,
∵∠AEM=∠DEC=90°,
∴∠AME=∠EAM=45°,
∴MA=AE.
故答案為:AM=AE,45°.
(2)如圖2中,連接BD,DM,BD交AC于點(diǎn)O,交AE于G.
∵BC=AC,CD=CE,
∴=,
∵∠ACB=∠DCE=45°,
∴∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE,=,
∴BD=AE,
∵∠BOC=∠AOG,
∴∠AGO=∠BCO=45°,
∵AP=PD,BP=PM,
∴四邊形ABDM是平行四邊形,
∴AM∥BD,AM=BD=AE,
∴∠MAE=∠BGA=45°,
∵EH⊥AM,
∴△AHE是等腰直角三角形,
∴AH=AE,∵AM=AE,
∴AH=MH,
∴EA=EM,
∴∠EAM=∠EMA=45°,
∴∠AEM=90°.
(3)如圖2中,作EH⊥AM于H.
∵EH⊥AM,∠MAE=45°,
∴△AHE是等腰直角三角形,
∴AH=AE,∵AM=AE,
∴AH=MH,
∴EA=EM,
∴∠EAM=∠EMA=45°,
∴∠AEM=90°.
如圖3-1中,
∵EM=EA=CD,設(shè)CD=a,則CE=a,BC=2a,AC=2a,EA=a,
∴AC2=AE2+EC2,
∴∠AEC=90°,
∴tan∠ACE==,
∴∠ACE=60°,
∴旋轉(zhuǎn)角α=60°.
如圖3-2中,同法可證∠AEC=90°,∠ACE=60°,此時(shí)旋轉(zhuǎn)角α=300°.
綜上所述,滿足條件的α的值為60°或300°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn).為拋物線上一點(diǎn),橫坐標(biāo)為,且.
⑴求此拋物線的解析式;
⑵當(dāng)點(diǎn)位于軸下方時(shí),求面積的最大值;
⑶設(shè)此拋物線在點(diǎn)與點(diǎn)之間部分(含點(diǎn)和點(diǎn))最高點(diǎn)與最低點(diǎn)的縱坐標(biāo)之差為.
①求關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;
②當(dāng)時(shí),直接寫出的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象經(jīng)過A(1,m),B(2,n),C(4,t),且點(diǎn)B是該二次函數(shù)圖象的頂點(diǎn).
(1)若m=3,n=4,求二次函數(shù)解析式;
(2)請(qǐng)?jiān)趫D中描出該函數(shù)圖象上另外的兩個(gè)點(diǎn),并畫出圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績?nèi)缦卤恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數(shù) | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空① ;② ;
(2)請(qǐng)計(jì)算甲六次測(cè)試成績的方差;
(3)若乙六次測(cè)試成績方差為,你認(rèn)為推薦誰參加比賽更合適,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),點(diǎn)P為線段AB上一個(gè)動(dòng)點(diǎn),連接EP,將△APE沿EP折疊得到△EPF,連接CE,CF,當(dāng)△ECF為直角三角形時(shí),AP的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車租賃公司共有汽車50輛,市場(chǎng)調(diào)查表明,當(dāng)租金為每輛每日200元時(shí)可全部租出,當(dāng)租金每提高10元,租出去的車就減少2輛.
(1)當(dāng)租金提高多少元時(shí),公司的每日收益可達(dá)到10120元?
(2)公司領(lǐng)導(dǎo)希望日收益達(dá)到10200元,你認(rèn)為能否實(shí)現(xiàn)?若能,求出此時(shí)的租金,若不能,請(qǐng)說明理由.
(3)汽車日常維護(hù)要一定費(fèi)用,已知外租車輛每日維護(hù)費(fèi)為100元,未租出的車輛維護(hù)費(fèi)為50元,當(dāng)租金為多少元時(shí),公司的利潤恰好為5500元?(利潤=收益一維護(hù)費(fèi)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車租賃公司共有汽車50輛,市場(chǎng)調(diào)查表明,當(dāng)租金為每輛每日200元時(shí)可全部租出,當(dāng)租金每提高10元,租出去的車就減少2輛.
(1)當(dāng)租金提高多少元時(shí),公司的每日收益可達(dá)到10120元?
(2)汽車日常維護(hù)要一定費(fèi)用,已知外租車輛每日維護(hù)費(fèi)為100元,未租出的車輛維護(hù)費(fèi)為50元,當(dāng)租金為多少元時(shí),公司的利潤恰好為5500元?(利潤=收益-維護(hù)費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1,△ABC是⊙O的內(nèi)接等邊三角形,點(diǎn)D,E在圓上,四邊形BCDE為矩形,這個(gè)矩形的面積是( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=﹣(x>0)與y=(x<0)的圖象如圖所示,點(diǎn)P是y軸負(fù)半軸上一動(dòng)點(diǎn),過點(diǎn)P作y軸的垂線交圖象于A、B兩點(diǎn),連接OA、OB.下列結(jié)論;①若點(diǎn)M1(x1,y1),M2(x2,y2)在圖象上,且x1<x2<0,則y1<y2;②當(dāng)點(diǎn)P坐標(biāo)為(0,﹣3)時(shí),△AOB是等腰三角形;③無論點(diǎn)P在什么位置,始終有S△AOB=7.5,AP=4BP;④當(dāng)點(diǎn)P移動(dòng)到使∠AOB=90°時(shí),點(diǎn)A的坐標(biāo)為(2,﹣).其中正確的結(jié)論為___.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com